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Foreword 

Anyone reading this book very likely depends on software-intensive systems in 
his/her everyday life. We already know that we are vulnerable to significant personal 
and economic disruptions due to dependability problems with desktop application 
software and Web-based commerce applications. Failures of highly dependable 
systems such as telecommunication and medical applications, while unlikely for any 
particular system, in aggregate cause serious problems on a regular basis. There are 
also disturbing signs of increasing dependability problems with safety-critical 
software incorporated into automobiles and other applications. We live in a world 
where even car radios come with instructions on how to hold down multiple buttons 
to perform a system reboot in case of a software crash (the user manual assures us this 
is a "normal" occurrence and not a defect in the system). As our reliance on 
dependable computing systems grows, we must learn to do better than we have in the 
past. 

Raising dependability to a first-class citizen in architectural approaches is perhaps 
the most promising way to improve overall system dependability. The key challenge 
and opportunity is to create ways to represent, evaluate, and improve dependability as 
an architectural attribute, rather than a property that is buried in the implementation 
details. 

Historically, architecture-level dependability has meant brute force, statically 
allocated replication of hardware and software components. This approach was 
expensive, and was applicable only in the most critical systems. More recently, 
architectural dependability research has also embraced adaptation of systems so that 
the architecture itself changes to provide better dependability despite losses of 
components or changes in the operational environment. This can be accomplished in 
many ways, including cost-effective dynamic management of replicas, adaptive 
connectors between components, and even on-the-fly changes in system functionality. 
Evaluating and validating such approaches remains a challenge, but the opportunities 
for improving dependability offered by dynamic, changeable architectures is 
significant and worth pursuing. 

This book is the third in a series of volumes presenting the latest results on 
architecting dependable systems. The series is unique in that it makes available the 
thinking of a unique collection of researchers that spans the areas of software 
engineering, fault tolerance, and system architecture. The contents of this volume 
show the fruits of the evolution and maturation of this area of research. Interest in the 
dependability of computing services has grown significantly, and is a major emphasis 
of the papers in this volume. So too has interest in using dynamic reconfiguration as 
an architecture-level approach to dependability. The ability to assess whether an 
architecture promotes or inhibits the creation of dependable systems remains an 
important topic of interest, as it has in previous years. 

The papers in this volume are at the forefront of understanding dependability at the 
architectural level. Once requirements for a system are set, the biggest mistakes and 
the most beneficial system tradeoff decisions are made at the architectural level. Thus, 
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the ideas presented in this volume are the latest progress in a vital research area for 
creating more dependable systems. 

May 2005 Philip Koopman 
 Carnegie Mellon University 



Preface 

The structure of a system is what enables it to generate its behavior from the 
behaviors of its components. The architecture of a software system is an abstraction 
of the actual structure of that system. The identification of the system structure early 
in its development process allows us to abstract away from details of the system, thus 
assisting the understanding of broader system concerns. One of the benefits of a well-
structured system is the reduction of its overall complexity, which in turn should lead 
to a more dependable system. System dependability is defined as reliance that can be 
justifiably placed on the service delivered by the system. It has become an essential 
aspect of computer systems as everyday life increasingly depends on software. It is 
therefore a matter for concern that dependability issues are usually left until too late in 
the process of system development. 

The process of system structuring may occur at different stages of the development 
or at different levels of abstraction. Reasoning about dependability at the architectural 
level has lately grown in importance because of the complexity of emerging 
applications, and the trend of building trustworthy systems from existing 
untrustworthy components. There has been a drive from these new applications for 
dependability concerns to be considered at the architectural level, rather than late in 
the development process. From the perspective of software engineering, which strives 
to build software systems that are rid of faults, the architectural consideration of 
dependability compels the acceptance of faults, rather than their avoidance. Thus the 
need for novel notations, methods and techniques that provide the necessary support 
for reasoning about faults at the architectural level. For example, notations should be 
able to represent non-functional properties and failure assumptions, and techniques 
should be able to extract from the architectural representations the information that is 
relevant for evaluating the system architecture from a certain perspective.  

This book comes as a result of an effort to bring together the research 
communities of software architectures and dependability. It was inspired by the Twin 
Workshops on Architecting Dependable Systems (WADS) organized during  
ICSE 2004 (International Conference on Software Engineering) and DSN 2004 
(Dependable Systems and Networks Conference) where many interesting papers 
were presented and lively discussions took place. The book addresses issues that are 
currently relevant to improving the state of the art in architecting dependable 
systems. It presents a selection of peer-reviewed papers stemming from some 
original ICSE 2004 WADS and DSN 2004 WADS contributions and several invited 
ones. The book consists of five parts: Architectures for Dependable Services; 
Monitoring and Reconfiguration in Software Architectures; Dependability Support 
for Software Architectures; Architectural Evaluation; and Architectural Abstractions 
for Dependability. 

The first part of the book, entitled Architectures for Dependable Services, includes 
five papers focusing on architectural approaches to ensure dependability for service-
oriented computing. The paper “Semantics-Aware Services for the Mobile Computing 
Environment” by Georgantas, Mokhtar, Tartanoglu and Issarny introduces abstract 
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semantic modelling of mobile services that allows both machine reasoning about 
service composability and enhanced interoperability at both middleware and 
application levels. The main motivation behind this work is that the existing service-
oriented solutions restrict considerably the openness of dynamic mobile systems by 
assuming a specific middleware infrastructure for which the components are to be 
developed. The approach proposed combines software architecture modelling with the 
semantic reasoning provided by the Semantic Web paradigm. In particular, OWL-
based ontologies are used to model mobile components and wireless connectors 
constituting mobile services and to express the conformance relations for checking 
composability and interoperability during composition of partially conforming 
services. The approach is demonstrated using composition of an e-shopping service 
with mobile customer components. The paper entitled “The Role of Agreements in IT 
Management Software” was written by Molina-Jimenez, Pruyne and van Moorsel. 
Various forms of agreements naturally arise in the service provider model as well as 
in multi-party computing models such as business-to-business, utility and grid 
computing. The authors argue that distributed computing infrastructures must 
incorporate agreements as first-class software building blocks to support automated 
adaptation and management in the presence of multiple (possibly competing) 
interests. The role of these agreements is twofold: they stipulate obligations and 
expectations of the involved parties, and they represent the goals to be met by the 
infrastructure. In order to automate run-time adaptation and management of systems 
and services, agreements should be encoded and integrated in management software 
platforms. The paper overviews the state of the art in software support for various 
forms of agreements, for all stages of their life cycle, as well as the platforms and 
technologies developed by standards bodies, industries and academia. Gaudel 
contributed to this part with the paper entitled “Toward Undoing in Composite Web 
Services”. Cancelling or reversing the effect of a former action is a necessity in most 
interactive systems. The simplest and most frequent form of this activity is the undo 
command that is available in common text or graphic editors. In the context of 
collaborative work, undoing is more intricate since the notion of the last action is not 
always meaningful. Within this framework the so-called ‘selective undo’, which 
allows selecting and cancelling some of the former actions, has recently received a lot 
of attention. The paper builds on the similarities between cooperative work and 
composite Web services: component Web services are concurrently accessed and may 
be treated as shared documents for undoing former actions. Among the latest results 
on undoing in group editors, the transformational model has been found to be useful 
for generalization to other kinds of distributed systems because it completely avoids 
backward state recovery and allows the selection and cancellation of any former 
operation. The paper demonstrates how some aspects of the undo framework can be 
applied in the context of composite Web services. The next paper, on “Architecting 
Web Services Applications for Improving Availability”, was written by de Lemos. 
This work introduces an architectural approach that incorporates a number of fault-
tolerant techniques: self-checking, comparison, and dynamic reconfiguration. The 
first two techniques are associated with the detection and handling of faults detected 
at the component level, while the latter is associated with functionality conducted at 
the system level. The architectural pattern proposed improves the availability of the 
composite system by employing two core solutions: individual components, 
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implementing crash-failure semantics, and the system supporting dynamic 
reconfiguration by switching the processing to a redundant component in case of 
component failures. The approach allows faults occurring in the services providers or 
in the communication channels to be tolerated. To demonstrate the applicability of 
this approach the paper uses a composite application offering dependable stock quotes 
from the Web by collecting quotes from different Web service providers. The system 
has been designed and implemented using the Web services core technologies. Some 
preliminary measurements have confirmed an improvement in the availability of the 
application. The last paper of the part, “Dependable Composite Web Services with 
Components Upgraded Online”, was written by Gorbenko, Kharchenko, Popov and 
Romanovsky. The paper proposes solutions for achieving high dependability of 
composite Web services facing the component online upgrades. The solutions make 
use of the natural redundancy formed by the latest and the previous releases of a Web 
service being kept operational. The paper describes how ‘confidence in correctness’ 
can be systematically used as a measure of both the component’s and the composite 
Web service’s dependability. Architectural solutions are proposed for composing 
services in which the upgrade of the component service is managed by switching the 
composite service from using the old release of the component service to using its 
newer release only when the confidence is high enough, so that the composite service 
dependability does not deteriorate as a result of the switch. In particular, the solutions 
support parallel execution of releases for maximizing reliability and responsiveness 
and sequential execution of releases for minimizing server capacity. The effectiveness 
of the solutions is assessed by simulation. The paper discusses the implications of 
employing the proposed architectures, including ways of ‘publishing’ the confidence 
in Web services, in the context of relevant standard technologies. 

The second part of this book is entitled Monitoring and Reconfiguration in 
Software Architectures and consists of four papers. In the first paper, “Adaptable 
Analysis of Dependable System Architectures Through Monitoring”, Dias and 
Richardson present an architecture-based approach for software monitoring that 
allows adapting the analysis of dynamic evolvable dependable systems. As systems 
evolve the set of properties being monitored might change, as well as the type of 
analysis to be performed. The MonArch architectural approach described in this paper 
is configurable, service-oriented, and supported by tools. The second paper, entitled 
“Run-Time Verification of Statechart Implementations”, by Pintér and Majzik, 
introduces a runtime verification framework for the concurrent supervision of UML 
statechart implementations.  They propose a temporal logic variant for statecharts that 
enables the definition of dependability criteria in early phases of the development 
when only preliminary behavioral models are available, and a watchdog module for 
detecting the errors introduced during the implementation. The latter observes the 
application using an abstract, but fully elaborated behavioral model as reference 
information. These two aspects of the framework are integrated with the 
corresponding error-handling, which is based on the concept of exception events as 
error indication signals. Using these facilities the visual toolkit of UML is used not 
only for modelling the application under normal circumstances but also for  
specifying the behavior in exceptional situations and serves as reference information 
for error detection. The paper by Malek, Beckman, Mikic-Rakic and Medvidovic, 
entitled “A Framework for Ensuring and Improving Dependability in Highly 
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Distributed Systems”, presents a framework for guiding the design and development 
of solutions for the deployment of distributed software systems. This framework 
enables the extension and reuse of existing solutions, and facilitates autonomic 
analysis and redeployment of a system’s deployment architecture. For that, the 
framework provides a library of reusable, pluggable, and customizable components 
that can be leveraged in addressing a variety of distributed system deployment 
scenarios. A suite of integrated tools supports the framework. The final paper of this 
section, written by Zhang, Yang, Cheng and McKinley and entitled “Enabling Safe 
Dynamic Component-Based Software Adaptation”, proposes an approach for 
dynamic adaptation that ensures safe structural and behavioral adaptation with respect 
to system consistency. The proposed approach takes into consideration dependency 
analysis for target components, specifically determining viable sequences of adaptive 
actions and those states in which an adaptive action may be applied safely. The 
solution is based on a centralized adaptation manager that schedules the adaptation 
process, which results in a globally minimum solution of adaptive actions. New added 
components are blocked until the system has reached a new safe state and thus 
avoiding unsafe adaptation. For dealing with possible failures during the adaptation 
process timeout and rollback mechanisms are employed to ensure atomicity in the 
adaptive actions. 

Part three of the book is on Dependability Support for Software Architectures and 
includes two papers. The paper on “Architecting and Implementing Versatile 
Dependability” was authored by Dumitras, Srivastava and Narasimhan. The authors 
start by stating that distributed applications must often consider and select the 
appropriate trade-offs among three important aspects:  fault-tolerance, performance 
and resources. The paper introduces the concept of versatile dependability that 
provides a framework for analyzing and reasoning about these trade-offs in 
dependable software architectures. The idea is demonstrated by presenting an 
architecture of a middleware framework that implements versatile dependability by 
providing the appropriate ‘knobs’ to tune and recalibrate the trade-offs. The 
framework can adjust the properties and the behavior of the system at development-
time, at deployment-time, and throughout the whole application lifecycle. This 
renders the versatile dependability approach useful both to applications that require 
static fault-tolerance configurations supporting the loss/addition of resources and 
changing workloads, as well as to applications that evolve in terms of their 
dependability requirements. Through a couple of specific examples, one on adapting 
the replication style at runtime and the other on tuning the system scalability under 
given constraints, the paper demonstrates how versatile dependability can provide an 
extended coverage of the design space of dependable distributed systems. Sowell and 
Stirewalt contributed to the book with the paper entitled “A Feature-Oriented 
Alternative to Implementing Reliability Connector Wrappers”. This work focuses on 
connectors and connector wrappers that explicitly specify the protocol of interaction 
among components and afford the reusable application of extra-functional behaviors, 
such as reliability policies. Often these specifications are used for modelling and 
analysis but in this paper the authors investigate how to use them in the design and 
implementation of the middleware substrate of a distributed system. More specifically 
the connectors and connector wrappers are elaborated as instantiations of a feature-
oriented middleware framework called Theseus supporting the design of 
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asynchronous distributed applications. The results of this study indicate that the 
relationship between specification features and implementation-level features is not 
one-to-one and that some specification features have complex, often subtle, 
manifestations in Theseus design. This work reports the lessons learned during 
development of these strategies and suggests techniques for designing middleware 
frameworks and composition tools that explicitly reify and expose the features 
specified by connectors and connector wrappers. 

In the fourth part of this book, entitled Architectural Evaluation, there are three 
papers. In the first paper, entitled “Concerning Predictability in Dependable 
Component-Based Systems: Classification of Quality Attributes”, Crnkovic, Larsson 
and Preiss analyze in the context of component-based software the relation between 
the quality attributes of components and those of their compositions. The types of 
relations are classified according to the possibility of predicting properties of 
compositions from the properties of the components and according to the influences 
of other factors such as software architecture or system environment. The 
classification is exemplified with particular cases of compositions of quality 
attributes, and its relation to dependability is discussed. Such a classification can 
indicate the efforts that would be required to predict the system attributes which are 
essential for system dependability, and in this way the feasibility of the component-
based approach in developing dependable systems. In the next paper, entitled 
“Architecture-Based Reliability Prediction for Service-Oriented Computing”, Grassi 
presents an approach for predicting the reliability of service-oriented computing based 
on the partial information published with each service. The methodology exploits 
ideas from the software architecture- and component-based approaches to software 
design. Different from other approaches, the proposed methodology exploits a 
“unified” service model that helps in the modelling and analyses of different 
architectural alternatives, where the characteristics of both “high level” services and 
“low level” services are explicitly taken into consideration. This model allows us to 
deal explicitly with the reliability impact of the infrastructure used to assemble the 
services and make them interact. Another issue that is discussed in this paper is how 
to automate the reliability prediction of a service assembly. In the last paper of this 
part, entitled “Fault Injection Approach Based on Architectural Dependencies”, 
Moraes and Martins present a study on how the architectural representation of a 
system can guide fault injection. Fault injection can be a valuable approach to validate 
whether an architectural solution achieves the required reliability level. In the 
proposed approach a dependency analysis technique, based on the interactions 
through their provided and required interfaces, was applied to establish the 
relationships among components. Dependency analysis in fault injection can be used 
to determine the components that are worth injecting, that is, those components whose 
failures may have greater impact on the system. Dependency relationships can be 
used to determine the target components in which to inject the faults (or to observe) 
when a component of interest has low controllability (or observability). An advantage 
of the proposed approach is that it allows dependencies to be established even when 
the source code is not available, which can be the case when third-party components 
are used in a system. 

The final part of this book, entitled Architectural Abstractions for Dependability, is 
a collection of two position papers that were based on presentations given during the 
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panel organized at each of the Twin Workshops. The theme of the two panels was the 
same, as well as the questions that were given to the two sets of panellists. The aim of 
this exercise was to identify what would be the similarities and differences in the 
viewpoints of the two sets of panellists that would come predominantly from the 
software engineering and dependability communities. The two papers in this part of 
the book are essentially individual opinions taken from each of those panels. In the 
first position paper, “Problem Structure and Dependable Architecture”, Jackson 
presents an approach to software development in which problem structuring is 
separated from software architecture. The problem is decomposed into subproblems 
of familiar classes that can be considered in isolation. Then the interactions among the 
subproblems are considered. The architectural task is seen as the task of composing 
the software machines associated with each subproblem and with the more complex 
interactions among them. This separation of concerns can contribute to achieving 
system dependability. In the second position paper, “The Lost Art of Abstraction”, 
Hiltunen and Schlichting provide an overview of issues that arise when using 
abstractions in the area of architecting dependable distributed systems, and propose 
some approaches to addressing these issues. The latter include the use of translucent 
abstractions that expose some of the internal workings of the abstraction 
implementation, customizable abstractions that allow attributes to be matched to the 
application requirements and execution scenario, and an intrusion-stop process 
abstraction that potentially provides a basis for architecting survivable systems. 

This book is the third book of a series that started two years ago, which includes 
expanded papers based on selected contributions to the ICSE 2002 and 2003 
workshops on Architecting Dependable Systems, and a number of invited papers. We 
believe that the introduction of the topic of architecting dependable systems is very 
timely and that we should continue to promote cross-fertilization between the 
communities of software architectures and dependability. 

As editors of this book, we are certain that its contents will prove valuable for 
researchers in the area and are genuinely grateful to the many people who made it 
possible. Our thanks go to the authors of the contributions for their excellent work, 
the ICSE 2004 WADS and DSN 2004 WADS participants for their active support and 
lively discussions, and Alfred Hofmann from Springer for believing in the idea of this 
book and helping us to get it published. Last but not least, we appreciate the time and 
effort our reviewers devoted to guaranteeing the high quality of the contributions. 
They are J. Burton, B. Cheng, N. Cook, I. Crnkovic, O. Das, F. Di Giandomenico,  
M. Dias, P. Ezhilchelvan, A.D.H. Farrell, N. Georgantas, C. Godart,  
P.A. de C. Guerra, H. Guiese, M. Jackson, M. Larsson, H. Madeira, I. Majzik,  
M. Malek, N. Medvidovic, M. Mikic-Rakic, C. Molina, P. Popov, J.F. Puett III,  
D. Richardson, C. Rubira, K. Saikoski, R. Schlichting, M. Sergot, E. Strunk,  
M. Tichy, E. Troubitsina, A. van Moorsel, P. Verbaeten, P. Gil Vicente,  
M. Zelkowitz, and several anonymous reviewers. 

Rogério de Lemos 
Cristina Gacek 

Alexander Romanovsky 
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Abstract. Today's wireless networks and devices support the dynamic composi-
tion of mobile distributed systems according to networked services and re-
sources. This has in particular led to the introduction of a number of computing 
paradigms, among which the Service-Oriented Architecture (SOA) seems to 
best serve these objectives. However, common SOA solutions restrict consid-
erably the openness of dynamic mobile systems in that they assume a specific 
middleware infrastructure, over which composed system components have been 
pre-developed to integrate. On the other hand, the Semantic Web introduces a 
promising approach towards the integration of heterogeneous components; cur-
rent semantics-based approaches are, however, restricted to application-level in-
teroperability. Combining the elegant properties of software architecture model-
ing with the semantic reasoning power of the Semantic Web paradigm, this pa-
per introduces abstract semantic modeling of mobile services that allows both 
machine reasoning about service composability and enhanced interoperability at 
both middleware and application level. 

1   Introduction 

Mobile distributed systems cover a broad spectrum of software systems, by consider-
ing all the forms of mobility, i.e., personal, computer, and computational [9]. In this 
paper, we focus on the mobility of devices, as enabled by today's wireless devices. 
Then, most specifics of mobile distributed systems compared to their stationary coun-
terpart follow from the features of the wireless infrastructure. Mobile software sys-
tems must in particular cope with the network's dynamics and quality of service (QoS) 
management; this is particularly challenging due to resource constraints of the wire-
less devices and varying bandwidth. A general approach to the management of the 
network's dynamics, following advances in wireless networks, lies in the automatic 
configuration and reconfiguration of networked devices and services. This is in par-
ticular supported by discovery protocols that provide proactive mechanisms for dy-
namically discovering, selecting and accessing reachable services and resources that 
meet a given specification [23]. This leads to building systems, in which (wireless) 
nodes advertise and consume networked resources according to their specific situation 
and requirements. This further leads to the design of mobile distributed systems as 
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systems of systems, whose component systems are autonomous and hosted by net-
worked nodes, either wireless or stationary. The systems' configuration then evolves 
and adapts according to the network connectivity of component systems. 

Despite the above dynamics, composition of systems shall ensure the correctness of 
the system's behavior with respect to target functional and non-functional properties. 
With respect to the former, the composition must enforce selection of the appropriate 
component systems and coordination protocols that conform to the specification of the 
component systems. More specifically, coordination protocols shall be agreed upon by 
the component systems, i.e., the communication protocols to be followed and their 
behavior need to be understood and adhered to by all the composed parties, although 
the protocols implemented by the resulting composite system cannot be fixed at design 
time. With respect to the latter, it is mandatory to account for the quality of service 
delivered by component systems and their integration. Specifically, the dynamic com-
position of mobile distributed systems must both minimize resource consumption on 
mobile nodes and satisfy the users' requirements with respect to perceived QoS [11].  

The dynamic composition of mobile distributed systems from component systems 
poses further the challenge of interoperability. The composed systems may be imple-
mented and deployed on different software and hardware platforms and assume dif-
ferent network infrastructures. Many of the network interoperability aspects can be 
addressed by reliance on the ubiquitous Internet’s network and transport protocols. 
However, at middleware and application level, the interoperability problem remains, 
concerning further both functional and non-functional properties. Considering the 
large number of players and technologies involved in realizing current mobile distrib-
uted systems, solutions to interoperability based on reaching agreements and enforc-
ing compliance with interoperability standards cannot scale. Instead, component sys-
tems shall adapt at runtime their functional and non-functional behavior in order to be 
composed and interoperate with other component systems. Moreover, supporting 
composition and interoperation requires the definition of behavioral conformance 
relations to reason on the correctness of dynamically composed systems with respect 
to both functional and non-functional properties. 

Various software technologies and development models have been proposed over 
the last 30 years for easing the development and deployment of distributed systems 
(e.g., middleware for distributed objects). However, the generalization of the Internet 
and the diversification of connected devices have led to the definition of a new com-
puting paradigm: the Service-Oriented Architecture (SOA) [29], which allows devel-
oping software as services delivered and consumed on demand. The benefit of this 
approach lies in the looser coupling of the software components making up an appli-
cation, hence the increased ability to making systems evolve as, e.g., application-level 
requirements change or the networked environment changes. The SOA approach 
appears to be a convenient architectural style enabling dynamic integration of applica-
tion components deployed on the diverse devices of today’s wireless networks. This 
paper provides an overview of SOA principles together with that of the most popular 
existing software technology complying with the SOA architectural style, which is the 
Web Services Architecture1. The Web Services paradigm has been successfully em-
ployed in elaborating mobile distributed systems [5]. However, the SOA paradigm 
                                                           
1 http://www.w3.org/TR/ws-arch/ 
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alone cannot meet the interoperability requirements for mobile distributed systems. 
Drawbacks include: (i) support of a specific core middleware platform to ensure inte-
gration at the communication level; (ii) interaction between services based on syntac-
tic description, for which common understanding is hardly achievable in an open 
environment.  

A promising approach towards addressing the interoperability issue relies on se-
mantic modeling of information and functionality, that is, enriching them with ma-
chine-interpretable semantics. This concept originally emerged as the vehicle towards 
the Semantic Web2[2]. The semantic representation of Web pages' content aims at 
enabling machines to understand and process this content, and to help users by sup-
porting richer discovery, data integration, navigation, and automation of tasks. Se-
mantic modeling is based on the use of ontologies and ontology languages that sup-
port formal description and reasoning on ontologies; the Ontology Web Language 
(OWL)3 is a recent proposition by W3C. A natural evolution to this has been the com-
bination of the Semantic Web and Web Services into Semantic Web Services [16]. 
This effort aims at the semantic specification of Web Services towards automating 
Web services discovery, invocation, composition and execution monitoring.  

The Semantic Web and Semantic Web Services paradigms address application-
level interoperability in terms of information and functionality [3,17]. However, in-
teroperability requirements of mobile distributed systems are wider, concerning func-
tional and non-functional interoperability that spans both middleware and application 
level; conformance relations enabling reasoning on interoperability are further re-
quired. In our previous work [6], building on software architecture principles, we 
elaborated base modeling of mobile software components, which integrates key fea-
tures of the mobile environment and allows for reasoning on the correctness of dy-
namically composed systems with respect to both functional and non-functional prop-
erties. Building on this work as well as on SOA and Semantic Web principles, we 
introduce in this paper semantic modeling of mobile services to enable interoperabil-
ity and dynamic composition of services. Specifically, we introduce OWL-based 
ontologies to model the behavior of mobile services, which allows both machine rea-
soning about service composability and enhanced interoperability. We note that our 
focus is on the functional behavior of services; specification of the non-functional 
behavior of services and definition of related ontologies is part of our future work, 
still based on [6]. We further point out that our approach to interoperability is generic, 
thus, it may as well apply to non-mobile systems. Nevertheless, the requirement for 
dynamic composition and interoperability is particularly evident in mobile systems, 
due to their high dynamics and, principally, heterogeneity. Specialization to mobile 
systems will get clearer when our solution will further address non-functional proper-
ties. Our work described in this paper is part of the effort of the IST Amigo4 project, 
which elaborates a generic framework for integration of the mobile communications, 
personal computing, consumer electronics and home automation domains in the net-
worked home environment. 

                                                           
2 http://www.w3.org/2001/sw/ 
3 http://www.w3.org/TR/owl-semantics/ 
4 http://www.extra.research.philips.com/euprojects/amigo/ 
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In the following, Section 2 provides an overview of the Service-Oriented Architec-
ture paradigm, integrating the Web Services, Semantic Web and Semantic Web Ser-
vices paradigms. Section 3 introduces our semantic modeling of mobile services. 
Based on this modeling, Section 4 presents our approach towards semantics-based 
interoperability. We discuss related work in Section 5 and conclude in Section 6.  

2   Service-Oriented Architecture 

Service-oriented computing aims at the development of highly autonomous, loosely 
coupled systems that are able to communicate, compose and evolve in an open, dy-
namic and heterogeneous environment. Enforcing autonomy with a high capability of 
adaptability to the changing environment where devices and resources move, compo-
nents appear, disappear and evolve, and dealing with increasing requirements on qual-
ity of service guarantees raise a number of challenges, motivating the definition of 
new architectural principles, as surveyed below for the service-oriented architectural 
style. Key properties for service-orientation are further discussed in Section 2.2. Sec-
tion 2.3, then, presents software technologies enabling service-orientation, focusing 
on the Web Services Architecture. Finally, an overview of Semantic Web standards 
and the Semantic Web Services is presented in Section 2.4. 

2.1   Service-Oriented Architectural Style 

A service-oriented system comprises autonomous software systems that interact with 
each other through well-defined interfaces. We distinguish service requesters that 
initiate interactions by sending service request messages and service providers that 
are the software systems delivering the service. An interaction is thus defined by the 
sum of all the communications (service requests and responses) between a service 
requester and a service provider, actually realizing some, possibly complex, interac-
tion protocol. 

Communications between service requesters and providers are realized by ex-
changing messages, formulated in a common structure processable by both interacting 
partners. The unique assumption on these interactions is that the service requester 
follows the terms of a service contract specified by the service provider for delivering 
the service with a certain guarantee on the quality of service. The service requester 
does not make any assumption on the way the service is actually implemented. In 
particular, neither the service name nor the message structure implies any specific 
implementation of the service instance. Indeed, the service implementation may actu-
ally be realized either by a simple software function or by a complex distributed sys-
tem involving as well third party systems. Similarly, the service provider should not 
make any assumption about the implementation of the service requester side. The 
only visible behavior for interacting parties is the protocol implemented by the ex-
change of messages between them. 

A service-oriented architecture is then defined as a collection of service requesters 
and providers, interacting with each other according to agreed contracts. Main charac-
teristics of the service-oriented architecture are its support for the deployment and the 
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interaction of loosely coupled software systems, which evolve in a dynamic and open 
environment and can be composed with other services. Service requesters usually 
locate service providers dynamically during their execution using some service dis-
covery protocol. 

 

Fig. 1. Service-oriented architecture 

A typical service-oriented architecture involving a service requester and a service 
provider is abstractly depicted in Figure 1. Localization of the service provider by the 
service requester is realized by querying a discovery service. Interactions are then as 
follows: 

− The service provider deploys a service and publishes its description (the service 
contract) towards the discovery service. 

− The service requester sends a query to the discovery service for locating a service 
satisfying its needs, which are defined with an abstract service contract, i.e., a ser-
vice description that is not bound to any specific service instance. 

− The discovery service returns to the service requester descriptions of available 
services, including their functional and non-functional interfaces. The requester 
then processes the description to get the messaging behavior supported by the ser-
vice, that is, whether interactions should follow request-response, solicit-request, 
one-way messaging or even more complex interaction protocol, the structure of 
messages, as well as the concrete binding information such as the service's end-
point address. 

− The service requester initiates interactions by sending a request message to the 
service. 

− Interactions between the service requester and the service provider continue by 
exchanging messages following the agreed interaction protocol. 

Note that the discovery service may be centralized (as depicted in Figure 1) or 
distributed (e.g., supported by all the service hosts), and may further adhere to ei-
ther a passive (led by service provider) or active (led by service requester) discov-
ery model. It is also important to note that the behavior of the interaction protocol 
between the service requester and provider may correspond to traditional communi-
cation protocols offered by middleware core brokers, but may as well realize a 
complex interaction protocol involving enhanced middleware-related services (e.g., 
replication, security, and transaction management) for the sake of quality of service. 
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The various refinements of the service-oriented software architectural style then 
lead to interoperability issue at the SOA level, possibly requiring interacting parties 
to compute and agree on the fly about a common discovery and communication 
protocol. 

2.2   Key Properties of Service-Orientation 

As previously stated, the benefit of service orientation for software system architec-
tures lies in the looser coupling of the software components making up an applica-
tion, hence the increased ability to making systems evolve as, e.g., application-level 
requirements change and the networked environment changes. Specifically, key 
properties of SOA with respect to openness include loose coupling, dynamicity and 
composability, as discussed below. 

In a service-oriented architecture, services are provided by autonomously devel-
oped and deployed applications. In a dynamic and open system, designing tightly 
coupled services would compromise the services’ respective autonomy, as they 
cannot evolve independently. Furthermore, failures would be more frequent in case 
of unavailability or failure of any of the composed applications. Instead, the ser-
vice-oriented architecture focuses on loosely coupled services. Loosely coupled 
services depend neither on the implementation of another service (a requester or a 
third party constituent), nor on the communication infrastructure. To achieve inter-
operability among diversely designed and deployed systems, services expose a 
contract describing basically what the service provides, how a service requester 
should interact with the provider to get the service and the provided quality of ser-
vice guarantees. Interactions between systems are done by message exchanges. This 
allows in particular defining asynchronous interactions as well as more complex 
message exchange patterns by grouping and ordering several one-way messages 
(e.g., RPC-like messaging by associating a request message with a response mes-
sage). Moreover, the message structure should be independent of any programming 
language and communication protocol. A service requester willing to engage in an 
interaction with a service provider must be able – based solely on this contract – to 
decide if it can implement the requested interactions. The service contract com-
prises the functional interface and non-functional attributes describing the service, 
which is abstractly specified using a common declarative language processable by 
both parties. The service definition language should be standardized for increased 
interoperability among software systems that are autonomously developed and de-
ployed. Indeed, the service definition language should not rely on any programming 
language used for implementing services, and the service being abstractly specified 
should be as independent as possible from the underlying implementation of the 
service. The service definition then describes functionalities offered by means of 
message exchanges, by providing the structure of each message and, optionally, 
ordering constraints that may be imposed on interactions involving multiple mes-
sages exchanges. Non-functional attributes may complement the functional inter-
face by describing the provided support for QoS. Several non-functional properties 
may be here defined, such as security, availability, dependability, performance etc. 
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In a distributed open system, the system components and the environment evolve 
continuously and independently of each other. New services appear, existing ser-
vices disappear permanently or get unavailable temporarily, services change their 
interfaces etc. Moreover, service requesters' functional or non-functional require-
ments may change over time depending on the context (i.e., both user-centric and 
computer-centric context). Adaptation to these changes is thus a key feature of the 
service-oriented architecture, which is supported thanks to service discovery and 
dynamic binding. To cope with the highly dynamic and unpredictable nature of 
service availability, services to be integrated in an application are defined using 
abstract service descriptions. Service requesters locate available services conform-
ing to abstract service descriptions using a service discovery protocol, in general by 
querying a service registry. On the other hand, service providers make available 
their offered services by publishing them using the service discovery protocol. The 
published service descriptions contain the functional and non-functional interfaces 
of services, and provide as well concrete binding information for accessing the 
service such as the service's URI and the underlying communication protocol that 
should be used. Service discovery and integration of available concrete services are 
done either at runtime, or before the execution of interactions. Each interaction 
initiated by a service requester in a service-oriented architecture may thus involve 
different services or service providers, as long as the contract between the service 
provider and the service requester is implementable by both parties, i.e., the service 
description complies with the requirements of the service requester, which can in 
turn implement supported interactions of the service provider. 

An advantage of describing services through well-defined interfaces is the possi-
bility to compose them in order to build new services based on their interfaces, 
irrespective of technical details regarding their underlying platform and their im-
plementation. A service built using service composition is called a composite ser-
vice, and can in its turn, be part of a larger composition. The composition process is 
a complex task requiring integrating and coordinating diversely implemented ser-
vices in a heterogeneous environment. It further requires dealing with the composi-
tion of QoS properties of individual services in order to provide a certain degree of 
QoS at the level of the composite service. 

2.3   Software Technologies Enabling Service-Orientation 

Compared to existing software technologies in the area of distributed computing, 
concepts introduced with the service-oriented architectural style are not new and 
can be implemented using various technologies. However, none of existing comput-
ing models or technologies do provide a complete solution. Furthermore, they often 
make assumptions that are not fully compatible with service-oriented computing 
concepts. A standardized model is also crucial to achieve the vision of service-
oriented computing for providing full interoperability among autonomous  
components. 

Object-oriented computing promotes the distinction between the implementation 
of a class and its public interface. However, there is a tight coupling between the 
interface of a class and its implementation. On the other hand, object-orientation 
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tends to build fine-grained classes with strong dependencies between them. Com-
ponent-based systems do provide means for building composite systems out of 
independent building blocks that hide their implementation. However, component-
based system integration is not appropriate for building dynamic systems, because 
of the strong dependencies upon available components at design time and of the 
interoperability issues between diversely implemented systems on heterogeneous 
platforms. Furthermore, interaction of components is often done using specific 
communication protocols, which is not always implementable by all parties. Dis-
tributed computing models such as CORBA5 tried to fill this gap by enforcing in-
teroperability by providing implementation-independent interfaces, standard com-
munication protocols and a dynamic discovery service. However, strong assump-
tions made on related standards, like the specific communication protocol that is not 
easily implementable in all environments and the interface definition language that 
is tightly coupled with the type system of the service implementation, caused differ-
ent vendors and developers to adopt custom and not standardized implementation 
decisions. While CORBA is widely used within single administrated domains, it 
failed to be adopted in the large scale. 

The Web Services Architecture appears as the most compliant architecture to 
SOA principles, essentially due to its support for machine-readable, platform-
neutral description languages using XML (eXtensible Markup Language), message-
based communication that supports both synchronous and asynchronous invoca-
tions, and its adaptation to standard Internet transport protocols. According to the 
working definition of the W3C, a Web service is a software system identified by a 
URI, whose public interfaces and concrete details on how to interact with are de-
scribed using XML-based languages. Using standardized specifications for defining 
Web services enforces interoperability among diversely implemented and deployed 
systems. In particular, Web service descriptions may be published and discovered 
by other software systems by querying common Web service registries. Systems 
may then interact in a manner prescribed by the service description, using XML-
based messages conveyed by standard Internet transport protocols like HTTP. Web 
services can be implemented using any programming language and executed on 
heterogeneous platforms, as long as they provide the above features. This allows 
Web services owned by distinct entities to interoperate through message exchange. 
By providing standardized platform-neutral interface description languages, mes-
sage-oriented communications using standard Internet protocols, and service  
discovery support, Web Services enable building service-oriented systems on the 
Internet. Although the definition of the overall Web Services Architecture is still 
incomplete, the base standards have already emerged from standardization consorti-
ums such as W3C and Oasis6, which define a core middleware for Web Services, 
partly building upon results from object-based and component-based middleware 
technologies. These standards relate to the specification of Web services and of 
supporting interaction protocols, referred to as conversation, choreography7 or or-
chestration (see Figure 2). 
                                                           
5 OMG Common Object Request Broker Architecture. http://www.corba.org.  
6 http://www.oasis-open.org/  
7 http://www.w3.org/2002/ws/chor 
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Fig. 2. Web Services Architecture 

There is no single implementation of the Web Services Architecture. As Web Ser-
vices refer to a group of related, emerging technologies aiming at turning the perva-
sive Web into a collection of computational resources, each with well-defined inter-
faces for their invocation, a number of implementation of these technologies are being 
introduced. Furthermore, Web Services are designed to be language and platform-
independent, which leads to the implementation of a number of software tools and 
libraries easing the integration of popular software platforms into the Web Services 
Architecture and/or easing the development and enabling deployment of Web services 
in various environments. The interested reader is referred to Web sites keeping track 
of relevant implementations for an exhaustive list, and in particular the Xmethods site 
at http://www.xmethods.com/.  

2.4   Semantic Modeling of Services 

The World Wide Web contains a huge amount of information, created by multiple 
organizations, communities and individuals, with different purposes in mind. Web 
users specify URI addresses and follow links to browse this information. Such a sim-
ple access method explains the popularity of the Web. However, this comes at a price, 
as it is very easy to get lost when looking for information. The root of the problem is 
that today’s Web is mainly syntactic. Documents structures are well defined but their 
content is not machine-processable. The Semantic Web specifically aims at overcom-
ing this constraint. The “Semantic Web” expression, attributed to Tim Berners-Lee, 
envisages the future Web as a large data exchange space between humans and ma-
chines, allowing an efficient exploitation of huge amounts of data and various ser-
vices. The semantic representation of Web pages' content will allow machines to 
understand and process this content, and to help users by supporting richer discovery, 
data integration, navigation, and automation of tasks.  
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To achieve the Semantic Web objectives, many Web standards are being used, and 
new ones are being defined. These standards may be organized in layers representing 
the Semantic Web structure, as shown in Figure 3. The Unicode and URI layers are 
the basic layers of the Semantic Web; they enforce the use of international characters, 
and provide means for object identification. The layer constituted of XML, XML 
namespace and XML schema allows a uniform structure representation for documents. 
By using RDF and RDF Schema, it is further possible to link Web resources with pre-
defined vocabularies. The ontology layer is then based on RDF (Resource Description 
Framework) and RDF Schema, and allows the definition of more complex vocabular-
ies, and relations between different concepts of these vocabularies. Finally, the logic 
and proof layers allow the definition of formal rules and the reasoning based on these 
rules. 

 

Fig. 3. Semantic Web structure 

Specifically, RDF is a simple language allowing the semantic description of Web 
resources. This semantic description is specified as a triple in RDF. Such a triple is 
constituted of a subject, a predicate and an object. The subject is a link to the de-
scribed resource. The predicate describes an aspect, a characteristic, an attribute, or a 
specific relation used to describe the resource. The object is an instance of a specific 
predicate used to describe a specific resource. Each piece of information in a triple is 
represented by a URI. The use of URIs ensures that the concepts that are used are not 
just structures stored in documents, but references to unique definitions accessible 
everywhere via the Web. For example, if one wants to access several databases stor-
ing persons' names and their addresses, and gets a list of the persons living in a spe-
cific district by using the postal code of the district, it is necessary to know for each 
database what are the fields representing the names and the postal codes. RDF allows 
specifying that: “(the field 5 of the database A)(is of type)(postal code)”, by using 
URIs for each term. RDF Schema is then a standard describing how to use RDF to 
define vocabularies, by adding to RDF the ability to define hierarchies, in terms of 
classes and properties. In RDF Schema, a class is a set of resources having similar 
characteristics, and the properties are relations that link the subject resources to the 
object ones. 
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In its origin, the term ontology is a philosophic term that means “the science of be-
ing”. This term has been reused in computer science to express knowledge representa-
tion and the definition of categories. Ontologies describe structured vocabularies, 
containing useful concepts for a community that wants to organize and exchange 
information in a non-ambiguous manner. Thus, an ontology is a structured and coher-
ent representation of concepts, classes, and relations between these concepts and 
classes pertaining to a vision of the world of a specific community. One of the most 
common goals in developing ontologies is for “sharing common understanding of the 
structure of information among people or software agents”. According to the descrip-
tion given in [24], an ontology is a formal explicit description of concepts in a domain 
of discourse (classes, sometimes called concepts), properties of each concept describ-
ing various features and attributes of the concept (slots, sometimes called roles or 
properties), and restrictions on slots (facets, sometimes called role restrictions). An 
ontology together with a set of individual instances of classes constitutes a knowledge 
base. 

One of the most widely used languages for specifying ontologies is the 
DAML+OIL language. DAML+OIL is the result of the fusion of two languages: 
DAML (Darpa Agent Markup Language) by the DARPA organization and OIL (On-
tology Inference Layer) by European projects. Based on the DAML+OIL specifica-
tion, the W3C has recently proposed the Ontology Web Language (OWL), which has 
been used in introducing Semantic Web Services, as surveyed below. OWL is a one of 
the W3C recommendations related to the Semantic Web. More expressive than RDF 
Schema, it adds more vocabulary for describing properties and classes (such as dis-
jointness, cardinality, equivalence). There are three sublanguages of OWL: OWL 
Lite, OWL DL and OWL Full. OWL Lite is the simplest one; it supports the basic 
classification hierarchy and simple constraints. OWL DL is named so, due to its cor-
respondence with Description Logics8; it provides the maximum of OWL expressive-
ness, while guaranteeing completeness and decidability. OWL Full also provides the 
maximum of OWL expressiveness, but without computational guarantees. Thus, due 
to its syntactic freedom, reasoning support on OWL Full ontologies is less predictable 
compared to OWL DL. 

OWL-S9 (previously named DAML-S) is an OWL-based Web service ontology to 
describe Web services properties and capabilities, resulting from the work of many 
industrial and research organisms such as BBN Technologies, CMU, Nokia, Stanford 
University, SRI International and Yale University. OWL-S specifies a model for Web 
services semantic description, by separating the description of a Web services' capa-
bilities from its external behavior and from its access details. Figure 4 abstractly de-
picts the model used in OWL-S. In this figure, we can see that a service description is 
composed of three parts: the service profile, the process model and the service 
grounding. The service profile describes the capabilities of the service, the process 
model describes the external behavior of the service, and the service grounding de-
scribes how to use the service. 

                                                           
8 A field of research concerning logics that form the formal foundation of OWL. 
9 http://www.daml.org/services/  
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Fig. 4. OWL-S model 

The service profile gives a high level description of a service and its provider. It is 
generally used for service publication and discovery. The service profile is composed 
of three parts: 

− An informal description of the service oriented towards a human user; it contains 
information about the origin of the service, the name of the service, as well as a 
textual description of the service. 

− A description of the services' capabilities, in terms of Inputs, Outputs, Pre-
conditions and Effects (IOPE). The inputs and outputs are those exchanged by the 
service; they represent the information transformation produced by the execution 
of a service. The pre-conditions are those necessary to the execution of the service 
and the effects are those caused by the execution of the service; in combination, 
they represent the state change produced to the world by the execution of a service. 
Preconditions and effects are represented as logical formulas in an appropriate lan-
guage. 

− A set of attributes describing complementary information about the service, such as 
the service type, category, etc. 
The process model is a representation of the external behavior – termed conversa-

tion – of the service as a process; it introduces a self-contained notation for describing 
process workflows. This description contains a specification of a set of sub-processes 
that are coordinated by a set of control constructs, such as a sequence or a parallel 
construct; these sub-processes are atomic or composite. The atomic processes corre-
spond to WSDL operations. The composite processes are decomposable into other 
atomic or composite processes by using a control construct. 

The service grounding specifies the information that is necessary for service in-
vocation, such as the protocol, message formats, serialization, transport and ad-
dressing information. It is a mapping between the abstract description of the service 
and the concrete information necessary to communicate with the service. The 
OWL-S service grounding is based on WSDL. Thus, it introduces a mapping be-
tween high-level OWL classes and low-level WSDL abstract types that are defined 
by XML Schema. 
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3   Modeling Services for Mobile Computing 

As already discussed, interoperability requirements of mobile distributed systems 
concern functional and non-functional interoperability that spans both middleware 
and application level; conformance relations enabling reasoning on interoperability 
are further required. As inferred from the survey of the previous section, the Service-
Oriented Architecture with Web Services as its main representative, semantically 
enhanced by Semantic Web principles into Semantic Web Services, only partially 
address the interoperability requirements of mobile distributed systems. 

On the other hand, mobile services may be conveniently modeled using concepts 
from the software architecture field: architectural components abstract mobile ser-
vices and connectors abstract interaction protocols above the wireless network. Based 
on these concepts, we have addressed in [6] the composition of mobile distributed 
systems at both middleware and application level by modeling functional and non-
functional properties of services and introducing conformance relations for reasoning 
on composability. Building on this work, we introduce in this section semantic model-
ing of mobile services so as to offer enhanced support to the interoperability require-
ments of mobile distributed systems. We focus on the functional behavior of services; 
semantic modeling of the non-functional behavior of services is part of our future 
work. Specifically, we introduce OWL-based ontologies to model mobile components 
and wireless connectors constituting mobile services. The reasoning capacity of OWL 
enables conformance relations for checking composability and interoperability meth-
ods for composing partially conforming services, as further detailed in Section 4. In 
our modeling, we have adopted some existing results from the OWL-S community 
[20]. Nevertheless, our approach is wider and treats in a comprehensive way the in-
teroperability requirements of mobile distributed systems. In Section 5, we point out 
the enhanced features of our approach, comparing with OWL-S approaches. 

In order to illustrate the exploitation of our model, we consider the example of an 
e-shopping service selling a specific type of goods, provided by a vendor component, 
which is normally stationary, hosted by some server. Mobile customer components 
hosted by wireless devices may access the vendor component over the wireless Inter-
net to purchase goods on behalf of a human client.  

3.1   Mobile Services 

In traditional software architecture modeling, a service specifies the operations that it 
provides to and requires from the environment. The dynamic composition of the mo-
bile service with peer networked services further requires enriching the service’s 
functional specification so as to ensure adherence to the coordination protocols to be 
satisfied for ensuring correct service delivery despite the dynamics of the networks, 
i.e., the interaction protocols that must be atomic. The specification of coordination 
protocols among mobile services relates to the one of conversation or choreography in 
the context of Web Services. Such a specification also relates to the one of interaction 
protocols associated with component ports to ensure conformance with connector 
roles, as, e.g., supported by the Wright architecture description language [25]. 
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Fig. 5. Basic elements of the mobile service ontology 

Building on the above fundamentals, we introduce a mobile service ontology to model 
the functional behavior of mobile services. The basic elements of this ontology are 
depicted in Figure 5. Component is the central class of the ontology representing the 
component realizing a mobile service. We introduce the notion of Capability for 
a component, which is a high-level functionality provided or required by the compo-
nent, thus, refined as ProvidedCpb and RequiredCpb. A capability specifies a 
number of inputs and outputs, modeled as classes InputPrm and OutputPrm, 
which are derived from the parent class Parameter. We associate capabilities to 
distinct conversations supported by a component. Thus, Capability is related to 
Conversation, which contains the specification of the related conversation. Ca-
pability is further related to a set of messages employed in the related conversa-
tion; class Message is used to represent such messages. Conversations are specified 
as processes in the π-calculus [4], as introduced in [6]. 

We model communication between service components as exchange of one-way 
messages. This is most generic and assumes no specific interaction model, such as 
RPC or event-based, which is realized by the underlying connector. For example, in 
the case of RPC, communication between two peer components is based on the exe-
cution of operations that are provided by one peer and invoked by the other peer. 
Such an operation may be represented as the exchange of two messages, the first 
being the invocation of the operation and the second being the return of the result. 
Hence, we enrich our ontology to represent messages in a detailed manner, as de-
picted in Figure 6. Class Message is related to class Parameter, which represents 
all parameters carried by the message; members of the same class are the inputs and 
outputs of a capability, as defined above. As capability is a high-level functionality of 
the component, the inputs and outputs of a capability are a subset of all parameters of 
the messages employed within this capability. Parameter is associated to classes 
PrmType, PrmValue and PrmPosition; the latter denotes the position of the 
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parameter within the message. This representation of messages is most generic. A 
special parameter commonly carried by a message is an identifier of its function, i.e., 
what the message does. In the case of RPC, for example, this identifier is the name of 
the operation. We represent this identifier with the derived class MsgFunction. 
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Parameter
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hasPrmPosition
PrmPosition
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Parameter

MsgFunction

Message

hasParameter
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Fig. 6. Message modeling in the mobile service ontology 

Based on the introduced mobile service ontology, a mobile service specification is 
as follows. For simplicity and space economy, we use – instead of the OWL notation 
– a simplified notation, only listing related OWL classes and their properties. Classes 
and instances of classes – termed individuals in OWL – are denoted by their first 
letter in uppercase, while properties are written in lowercase.   

Component 
   provides ProvidedCpb 
   requires RequiredCpb 
ProvidedCpb or RequiredCpb 
   inputs InputPrm 
   outputs OutputPrm 
   converses Conversation 
   employs Message 
Message 
   hasParameter MsgFunction 
   hasParameter Parameter 
MsgFunction or Parameter 
   hasPrmType PrmType 
   hasPrmPosition PrmPosition 
   hasPrmValue PrmValue 

Example. We now employ the elaborated mobile service ontology to model the ven-
dor component involved in the e-shopping service of the example introduced above. 
We refine the mobile service ontology to produce the vendor ontology. Each class of 
the mobile service ontology is instantiated; the produced individuals constitute the 
vendor ontology. We assume that the vendor component supports the operations 
browse(), book() and buy(), which shall be realized as synchronous two-way interac-
tions. From these operations we derive the messages supported by the vendor compo-
nent, which we define as individuals of the class Message. For example, operation 
browse() produces the following listed messages, where parameters (MsgFunction  
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and Parameter individuals) of the messages are also specified. In our simplified 
notation, we use braces to denote that a class or individual is associated through a 
property to more than one other classes or individuals.  

Message BrowseReq 
   hasParameter BrowseReqFunc 
   hasParameter ArticleInfo 
Message BrowseRes 
   hasParameter BrowseResFunc 
   hasParameter {ArticleInfo, ArticleId, Ack} 

BrowseReq is the input request message and BrowseRes is the output response 
message of the synchronous two-way interaction. The other two operations produce 
the following messages, where MsgFunction parameters have been omitted: 

Message BookReq 
   hasParameter ArticleId 
Message BookRes 
   hasParameter {ReservationId, Ack} 

Message BuyReq 
   hasParameter {ReservationId, CreditCardInfo, Ship-
pingInfo} 
Message BuyRes 
   hasParameter {ReceiptId, Ack} 

Operation browse() allows browsing for an article by providing – possibly incom-
plete – information on the article; if this article is available, complete information is 
returned, along with the article identifier and a positive acknowledgement. Opera-
tion book() allows booking an article; a reservation identifier is returned. Operation 
buy() allows buying an article by providing credit card information and shipping 
information; a receipt identifier is returned. The vendor component supports further 
the operations register_for_availability() and notify_of_availability(), which shall 
be grouped in an asynchronous two-way interaction. These operations are encoded 
as follows:  

Message RegisterForAvailabilityIn 
   hasParameter {ArticleInfo, ReplyAddress} 

Message NotifyOfAvailabilityOut 
   hasParameter {ArticleInfo, SourceAddress} 

The suffixes in and out have been added to these message names just to make clear 
the direction of the messages. The first operation or message allows registering for 
a specific article. When this article becomes available, a notification is sent back to 
the registered entity by means of the second operation or message. The vendor 
component and a peer customer component take care of correlating the two opera-
tions by including appropriate identifiers in the operations. Furthermore, we specify 
syntactic characteristics of the produced messages. For example, for message 
BrowseReq: 
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MsgFunction BrowseReqFunc 
   hasPrmType string 
   hasPrmPosition 1 
   hasPrmValue “browse_req” 
Parameter ArticleInfo 
   hasPrmType some complex type 
   hasPrmPosition 2 

The supported messages are incorporated into the following specified two capabilities 
(ProvidedCpb individuals) provided by the vendor component. We specify the 
inputs (InputPrm individuals) and outputs (OutputPrm individuals) of these ca-
pabilities, as well as the associated conversations (Conversation individuals) 
described in the π-calculus. In the conversation specifications the following listed 
notation is used. For simplicity, we omit message parameters in the conversation 
specifications. 

P, Q ::=  Processes 
 P.Q Sequence 
 P|Q Parallel composition 
 P+Q Choice 
 !P Replication 
 v(x) Input communication 
 v[X] Output communication 

Component Vendor 
   provides {Buy, Available} 
ProvidedCpb Buy 
   inputs {ArticleInfo, CreditCardInfo, ShippingInfo} 
   outputs {ArticleInfo, ReceiptId, Ack} 
   converses “ 
                    BrowseReq().BrowseRes[]. 
                   ( 
                       !(BrowseReq().BrowseRes[]) + 
                       !(BrowseReq().BrowseRes[]).BookReq().BookRes[].BuyReq().BuyRes[] 
                   ) ” 
ProvidedCpb Available 
   inputs ArticleInfo 
   outputs ArticleInfo 
   converses “RegisterForAvailabilityIn().NotifyOfAvailabilityOut[]” 

An entity using capability Buy may either browse for articles several times, or browse 
several times and then book and buy an article. The inputs and outputs of Buy are a 
subset of all the parameters involved in the three included operations. A number of 
intermediate parameters, such as ArticleId and ReservationId, are further 
involved in the conversation; these are not visible at the level of capability Buy. An 
entity using capability Available registers and gets notified asynchronously of a 
newly available article. 

It is clear from the example that most of the introduced classes of our ontology rep-
resent a semantic value that expresses the meaning of the specific class. For example, 
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giving the value Buy to ProvidedCpb, we define the semantics of the specific 
capability provided by the vendor component, as long as we can understand the mean-
ing of Buy. The only classes that do not represent a semantic – according to the above 
definition – value are Conversation, which is a string listing the π-calculus de-
scription of the related conversation; PrmPosition, which is an integer denoting 
the position of the related parameter within the message; and PrmValue, which is 
the actual value of the parameter. Incorporating these non-semantic elements into our 
ontology allows an integrated modeling of mobile services with minimum resorting to 
external formal syntactic notations, as the π-calculus. 

3.2   Wireless Connectors 

In the mobile environment, connectors specify the interaction protocols that are im-
plemented over the wireless network. This characterizes message exchanges over the 
transport layer to realize the higher-level protocol offered by the middleware, on top 
of which the mobile component executes. In addition, the dynamic composition of 
mobile services leads to the dynamic instantiation of connectors. Hence, the specifica-
tion of wireless connectors is integrated with the one of mobile services (actually 
specifying the behavior of connector roles), given that the connectors associated with 
two interacting mobile services must compose. 
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Fig. 7. Connector modeling in the mobile service ontology 

To integrate connectors in the so far elaborated mobile service model, we extend the 
mobile service ontology with a number of new classes, as depicted in Figure 7. Ca-
pability is related to class Connector, which represents the specific connector 
used for a capability; we assume that a capability relies on a single connector, which 
is a reasonable assumption. A connector realizes a specific interaction protocol; this is 
captured in the relation of Connector to class Protocol, which contains the 
specification of the related interaction protocol. Interaction protocols are specified as 
processes in the π-calculus. 

An interaction protocol realizes a specific interaction model for the overlying com-
ponent, such as RPC or event-based. This interaction model is implicitly specified in 
the π-calculus description of the interaction protocol. Nevertheless, the interaction 
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model may additionally be semantically represented by class Connector. As there 
is a large variety of connectors and associated interaction models [21], there is no 
meaning in enriching the generic mobile service ontology with a taxonomy of connec-
tors. Class Connector may be associated to external ontologies on a case by case 
basis to represent the interaction model supported by a specific connector. 

Furthermore, a connector supports an addressing scheme for identifying itself as 
well as its associated component over a network realized by the underlying transport 
layer. A number of different approaches are allowed here, depending on the address-
ing functionality already supported by the transport layer and on the multiplexing 
capability of the connector, i.e., its capability to support multiple components. The 
latter further relates to a connector acting as a container for components, e.g., a Web 
server being a container for Web applications. Thus, considering the Web Services 
example, we may distinguish the following addressing levels: 

− The TCP/IP transport layer supports IP or name addressing of host machines. 
− A Web Services SOAP/HTTP connector binds to a specific TCP port; in this case 

the transport layer specifies an addressing scheme for the overlying connectors. 
− The SOAP/HTTP connector supports addressing of multiple Web service compo-

nents, treating Web services as Web resources; thus, incorporating the underlying 
IP address & port number addressing scheme, the SOAP/HTTP connector supports 
URI addressing.  
To be most generic, we enable a connector addressing scheme without assuming 

any connector addressing pre-specified by the transport layer. This scheme shall in-
corporate the established transport layer addressing. Moreover, this scheme shall 
integrate component identifiers for distinguishing among multiple components sup-
ported by a single connector, when this is the case. The introduced generic scheme is 
represented by the relation of Connector to class Address. Thus, Address 
represents a reference of a mobile service component accessible through a specific 
connector and underlying transport layer. Address is a subclass of Parameter. 
Connector is further related to a set of messages exchanged in the related inter-

action protocol, which are members of the class Message. This is the same generic 
class used for component-level messages, as it also applies very well to connector-
level messages. Communication between connectors can naturally be modeled as 
exchange of one-way messages; this takes place on top of the underlying transport 
layer. To enable component addressing, connector-level messages integrate address-
ing information. To be most generic, we enable connector-level messages to carry 
complete addressing information, assuming no addressing information added by the 
transport layer; certainly, this scheme may easily be adapted according to the address-
ing capabilities of the transport layer. We introduce two subclasses of Address, 
named LocalAddr and RemoteAddr, which represent the local address and re-
mote address information included in a connector-level message exchanged between 
two peer connectors. Remote address information is used to route the message to its 
destination, while local address information identifies the sender and may be used to 
route back a possible response message.  

According to the distinction introduced in the previous section, only Protocol 
does not represent a semantic value among the new classes of our ontology. Based on 
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the extended mobile service ontology, a mobile service specification is extended as 
follows to integrate connectors: 

ProvidedCpb or RequiredCpb 
   supportedBy Connector 
Connector 
   interacts Protocol 
   references Address 
   exchanges Message 
Message 
   hasParameter LocalAddr 
   hasParameter RemoteAddr 

Example. We now complete the modeling of the vendor component based on the 
extended mobile service ontology. As specified in the previous section, the vendor 
component relies on two connectors, one supporting synchronous two-way 
interactions and one supporting asynchronous two-way interactions. By properly 
instantiating class Connector and its associated classes, we can model the two 
required connectors, thus completing the vendor ontology. We define two individuals 
of Connector: 

Connector VConn1 
interacts “vreq(vreq_prm).vres[VRES_PRM]” 

  references VAddr 
exchanges {VReq, VRes} 

Connector VConn2 
interacts “vreq(vreq_prm)”, “vres[VRES_PRM]” 

  references VAddr 
exchanges {VReq, VRes} 

Address VAddr 
   hasPrmType URL 
   hasPrmValue “http://www.e-shopping.com:8080/vendor” 

Both connectors exchange a request and a response message. For connector VConn1, 
the emission of the response message is synchronous, following the reception of the 
request message; while for connector VConn2, the emission of the response message 
is asynchronous, not coupled with the reception of the request message. Both connec-
tors enable addressing the vendor component with a URL address following the 
scheme http://<host>:<port>/<path>. Each connector supports a specific capability 
of the vendor component:  

ProvidedCpb Buy 
   supportedBy VConn1 
ProvidedCpb Available 
   supportedBy VConn2 

Furthermore, we specify the characteristics of messages VReq and VRes. For ex-
ample, for message VReq, which is input by the vendor component: 
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Message VReq 
   hasParameter VReqFunc 
   hasParameter {VLocalAddr, VRemoteAddr} 
   hasParameter VReqPrm 
MsgFunction VReqFunc 
   hasPrmType byte 
   hasPrmPosition 1 
   hasPrmValue 7Ah 
RemoteAddr VRemoteAddr 
   hasPrmType URL 
   hasPrmPosition 3 
   hasPrmValue “http://www.e-shopping.com:8080/vendor” 
LocalAddr VLocalAddr 
   hasPrmType URL 
   hasPrmPosition 2 
Parameter VReqPrm 
   hasPrmType hex 
   hasPrmPosition 4 

PrmValue for VLocalAddr will be determined by the peer connector – supporting 
a customer component – sending the request message. PrmType hex of VReqPrm 
determines the encoding of the component-level message (e.g., an invocation of a 
remote operation) carried by the connector-level request message. This further corre-
sponds to the serialization of remote method invocations performed by a middleware 
platform. 

4   Semantics-Based Interoperability 

Given the above functional specification of mobile services and related wireless con-
nectors, functional integration and composition of mobile services in a way that en-
sures correctness of the mobile distributed system may be addressed in terms of con-
formance of respective functional specifications. Conformance shall be checked both 
at component and at connector level; for two services to compose, conformance shall 
be verified at both levels. To this end, we introduce a conformance relation for each 
level. To allow for the composition of heterogeneous mobile services, our confor-
mance relations enable identifying partial conformance between components and 
between connectors. Then, we employ appropriate interoperability methods at each 
level to ensure composition of heterogeneous components and connectors; for two 
services to compose, interoperability must be established at both levels.  

Our conformance relations and interoperability methods exploit our ontology-
based modeling of mobile services. As detailed in Section 3, the introduced mobile 
service ontology enables representing semantics of components and connectors. Nev-
ertheless, to enable a common understanding of these semantics, their specification 
shall build upon possibly existing globally shared ontologies. Incorporating external  
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commonly shared ontologies serve two purposes: (i) these ontologies are used as 
common vocabulary for interpreting mobile services’ semantics; and (ii) these on-
tologies may be used to extend the mobile service ontology to enable a more precise 
representation of mobile services’ semantics. OWL targeting the semantic Web pro-
vides inherent support to the distribution of ontologies enabling the incremental re-
finement of ontologies based on other imported ontologies. Further, employing OWL 
to formally describe semantics allows for automated interpretation and reasoning on 
them, thus enabling conformance checking and interoperability. 

In the following, we introduce our solution to interoperability at connector and at 
component level, specifying conformance relation and interoperability method for 
each level. We first address connector level, as this constitutes the base for service 
interoperability. 

4.1   Interoperability at Connector Level 

Based on our functional modeling of wireless connectors, a connector (Connector), 
realizes an interaction protocol (Protocol) specified as a process in the π-calculus, 
establishes an addressing scheme (Address) described by a complex data structure 
(Parameter), and employs a number of messages (Message) described as com-
plex data structures (Parameter). These classes are complementary or may even 
overlap in specifying a connector. For example, we may associate class Connector 
to external ontologies representing some features not, partially or even fully specified 
by the other classes; in this way, we may, for example, represent with Connector 
the interaction model realized by the connector, such as RPC or event-based. This 
redundancy may be desirable in order to facilitate the conformance relation or the 
interoperability method described in the following. 

Conformance relation. We introduce a conformance relation for connectors based on 
the above classes. As already discussed, we specify a connector by instantiating these 
classes into individuals specific to this connector. Two connectors may be composed 
if they (at least partially) conform to each other in terms of their corresponding 
individuals for all the above classes. The definition of partial conformance depends on 
the capacity to deploy an adequate interoperability method to compensate for the non-
conforming part. 

Conformance in terms of interaction protocols is checked over the associated π-
calculus processes, as detailed in [6]; this implicitly includes the realized interaction 
models. For interaction models, conformance may alternatively be asserted by seman-
tic reasoning on the related individuals of class Connector. In the same way, for 
addressing schemes, exchanged messages, parameters of messages and types of pa-
rameters, conformance may be asserted by semantic reasoning on the related indi-
viduals of classes Address, Message, Parameter and PrmType. Finally, to 
ensure syntactic conformance in exchanged messages, the specific values of PrmPo-
sition and PrmValue shall be the same for the two connectors. 
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Interoperability method. To compose non-absolutely conforming connectors, an 
appropriate interoperability method shall be employed. We employ a connector 
customizer that serves as an intermediate for the message exchange between the two 
connectors. The customizer has access to the ontologies of the two connectors, and 
from there to the parent mobile service ontology and the possibly incorporated 
external ontologies. The customizer shall take all appropriate action to remedy the 
incompatibilities between the two connectors. For example, upon reception of a 
message, the customizer shall interpret it and perform all necessary conversions to 
make it comprehensible to the other peer. The connector customizer may be 
collocated with one of the two peers or be located on an intermediate network node, 
depending on architectural requirements; for example, for wireless ad hoc computing 
environments the former solution is more appropriate. 

Example. We now concretize the above outlined conformance relation and 
interoperability method for the e-shopping service example. In Section 3, we specified 
the vendor ontology defining the vendor component and its associated connectors. 
The vendor component provides its services to customer components.  

To enable a more precise representation of connector semantics for the vendor and 
customer components, we assume the existence of an external remote operation con-
nector ontology, which defines a simple taxonomy of connectors supporting remote 
operation invocation. This ontology provides a common vocabulary for connectors of 
this type. This ontology is outlined in the following:  

RemoteOperationConn 
   hasLegs {OneWay, TwoWay} 
   hasSynchronicity {Sync, Async} 
   keepsState {State, NoState} 

Class RemoteOperationConn is related to three other classes, which are de-
fined above by enumeration of their individuals. Property hasLegs determines 
whether a connector supports one-way or two-way operations; hasSynchronic-
ity determines whether a connector supports synchronous or asynchronous opera-
tions; finally, keepsState determines whether a connector maintains state during 
the realization of an operation, e.g., for correlating the request and response messages 
of an asynchronous operation. We additionally pose the restriction that each one of 
the three above properties has cardinality exactly one, which means that any Re-
moteOperationConn individual has exactly one value for each of the three  
properties. 

We further refine the remote operation connector ontology to identify a number of 
allowed combinations of the above properties, which produces a number of feasible 
connector types specified by the ontology. Hence, the following subclasses of Re-
moteOperationConn are defined: 

SyncConn 
   hasLegs TwoWay 
   hasSynchronicity Sync 
   keepsState State 
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AsyncStateConn 
   hasLegs TwoWay 
   hasSynchronicity Async 
   keepsState State 

AsyncNoStateConn 
   hasSynchronicity Async 
   keepsState NoState 

In the above definitions, properties in boldface are set to be a necessary and sufficient 
condition for identifying the associated connector class. For example, a synchronous 
connector has synchronicity Sync, and synchronicity Sync is sufficient to identify a 
synchronous connector. NoState for an asynchronous connector means that the 
communicating components take care of correlating the request and response mes-
sages of an asynchronous operation. In this case, it makes no difference whether an 
asynchronous connector is one-way or two-way. Thus, hasLegs is left undefined in 
AsyncNoStateConn; it may take any of the two values OneWay or TwoWay. 

We now exploit the above ontology to specify interaction model semantics for the 
two connectors supporting communication between the vendor component and a 
specific customer component. To this end, the two connectors inherit from both the 
mobile service and remote operation connector ontologies. More specifically, the two 
connectors are represented by two classes that are subclasses of both Connector 
and RemoteOperationConn, which means that they inherit properties of both 
classes: 

VendorConn 
   hasLegs TwoWay 
   hasSynchronicity Async 
   keepsState NoState 

CustomerConn 
   hasLegs OneWay 

These two connector classes are defined independently, each one by the designer of 
the related connector, and make part of the vendor and customer ontologies, corre-
spondingly, which are normally local to the related components and connectors. Here, 
the two designers have opted not to reuse any of the specialized connector classes, 
pre-defined in the remote operation connector ontology; they have instead defined 
two new connector classes. We can see that class VendorConn represents the fea-
tures required by the Connector individual VConn2 defined in Section 3.2. Em-
ploying an OWL reasoning tool, an inference about conformance between Vendor-
Conn and CustomerConn may be drawn as follows: 
VendorConn has both property values Async and NoState, which makes it 

necessarily an AsyncNoStateConn. CustomerConn must have exactly one 
value for each of the two undefined properties. Its synchronicity cannot be Sync, 
because this would make CustomerConn necessarily a SyncConn, which, how-
ever, is two-way, while CustomerConn is one-way. Thus, CustomerConn has 
property value Async. In the same way, its state property cannot be State, because 
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this together with Async would make it necessarily an AsyncStateConn, which 
also is two-way. Thus, CustomerConn has property value NoState. Property 
values Async and NoState make CustomerConn necessarily an Async-
NoStateConn. Thus, VendorConn and CustomerConn belong to the same 
connector class within the remote operation connector ontology, which makes them 
conforming in terms of their supported interaction models. 

In the above, interaction model conformance was asserted by comparing semantics 
co-represented by class Connector of the mobile service ontology (together with 
class RemoteOperationConn of the remote operation connector ontology). Con-
formance between VendorConn and CustomerConn shall be further checked in 
terms of all the other classes of the mobile service ontology. We instantiate Vendor-
Conn and CustomerConn to define the rest of their characteristics according to this 
ontology:  

VendorConn VConn2 
(as specified in Section 3.2) 

CustomerConn CConn2 
interacts “cout[COUT_PRM]”, “cin(cin_prm)” 

  references CAddr 
exchanges {COut, CIn} 

Address CAddr 
   hasPrmType URL 
   hasPrmValue some URL 
Message COut 
   hasParameter COutFunc 
   hasParameter {CLocalAddr, CRemoteAddr} 
   hasParameter COutPrm 
MsgFunction COutFunc 
   hasPrmType word 
   hasPrmPosition 1 
   hasPrmValue 3FEDh 
RemoteAddr CRemoteAddr 
   hasPrmType URL 
   hasPrmPosition 2 
   hasPrmValue “http://www.e-shopping.com:8080/vendor” 
LocalAddr CLocalAddr 
   hasPrmType URL 
   hasPrmPosition 3 
Parameter COutPrm 
   hasPrmType bin 
   hasPrmPosition 4 

Interaction protocol conformance for VConn2 and CConn2 is checked over the 
associated π-calculus processes, which are obviously complementary (see [6]); how-
ever, different names are used for messages VReq-COut, VRes-CIn and for mes-
sage parameters VReqPrm-COutPrm, VResPrm-CInPrm. Semantic conformance 
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between corresponding messages and parameters is asserted by using external ontolo-
gies, as already done for semantic conformance between interaction models. In the 
same way, semantic conformance is asserted between addressing schemes (VAddr-
CAddr). 

Thus, the conformance relation applied to the current example requires: (i) seman-
tic conformance between interaction models, addressing schemes, messages and mes-
sage parameters; and (ii) workflow conformance between interaction protocols. 

Nevertheless, there are still incompatibilities between VConn2 and CConn2 in 
terms of types of parameters (e.g., between VReqPrm and COutPrm), position of 
parameters within messages (e.g., between VRemoteAddr and CRemoteAddr 
within VReq and COut), and values of parameters (e.g., between VReqFunc and 
COutFunc). Further, referenced types such as URL, byte, word, hex and bin may not 
belong to the same type system. Thus, we employ a connector customizer which re-
solves these incompatibilities by (i) converting between types by accessing some 
external type ontology; if different type systems are used, external ontologies can help 
in converting between type systems; (ii) modifying position of parameters; and (iii) 
modifying values of parameters. This customizer exploits the semantic conformance 
established above to identify the semantically corresponding messages and message 
parameters of VConn2 and CConn2. 

A weaker conformance relation than the one applied to this example would require 
a more competent interoperability method, e.g. a connector customizer capable of 
resolving incompatibilities in addressing schemes or even in interaction models and 
workflows of interaction protocols. The feasibility of such cases depends on the na-
ture of addressing schemes or interaction protocols and the degree of heterogeneity, 
and shall be treated on a case-by-case basis. Enabling automated, dynamic configura-
tion or even generation of the appropriate interoperability method from some persis-
tent registry of generic interoperability methods is then a challenging objective. On-
tologies could then be used to represent generic interoperability methods and to guide 
the automated generation or configuration of these methods based on the concrete 
ontologies of the two incompatible connectors. 

4.2   Interoperability at Component Level 

Based on our functional modeling of mobile components, a component provides or 
requires a number of capabilities (ProvidedCpb, RequiredCpb). Each capability 
has a number of inputs (InputPrm) and outputs (OutputPrm) described as com-
plex data structures (Parameter), realizes a conversation (Conversation) speci-
fied as a process in the π-calculus, and employs a number of messages (Message) 
described as complex data structures (Parameter). Based on the similarity of capa-
bility Conversation to connector Protocol and on the common use of Mes-
sage by both capabilities and connectors, we could introduce a conformance relation 
and associated interoperability method for component capabilities similar to the ones 
elaborated for connectors. Nevertheless, considering the diversity of component capa-
bilities and conversations, requiring workflow conformance between component con-
versations and semantic conformance for each single message and message parameter 
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– as for the two connectors in the example above – is too restrictive. Moreover, the 
introduced connector-level interoperability method, based on communication inter-
working, cannot deal with the high heterogeneity of components, e.g., it cannot re-
solve highly incompatible component conversations. Therefore, we introduce a more 
flexible, coarse-grained approach for component conformance and interoperability 
based on component capabilities. 

Conformance relation. Our high-level conformance relation for components states 
that two components may be composed if they require and provide in a 
complementary way semantically conforming capabilities. We model a capability by 
instantiating classes ProvidedCpb or RequiredCpb, InputPrm and 
OutputPrm into individuals specific to this capability. Semantic conformance 
between two capabilities is asserted by reasoning on their corresponding individuals. 
As already detailed for connectors, these individuals shall as well inherit from 
external ontologies; this allows a rich representation of capabilities based on common 
vocabularies, which enable their interpretation and conformance checking.     

Depending on the existence of external ontologies, capabilities may be directly 
provided with semantics (class ProvidedCpb or RequiredCpb). Alternatively, 
capabilities may be semantically characterized by the semantics of their inputs and 
outputs (classes InputPrm and OutputPrm). As discussed in [26] for Semantic 
Web Services capabilities, the latter approach requires a reduced set of ontologies, as 
inputs and outputs may be combined in many diverse ways to produce an indefinite 
number of capabilities. However, semantically characterizing a capability based only 
on its inputs and outputs may produce ambiguity and erroneous assertions, e.g., when 
checking conformance between capabilities. We opt for a hybrid approach, where, 
depending on the availability of related ontologies, both capability semantics and 
input/output semantics are used. As presented in Section 2.4, OWL-S identifies Web 
services by their inputs and outputs, enhanced by preconditions and effects. This 
enables a more precise representation of a service. We consider integrating precondi-
tions and effects into our model as part of our future work. 

Our conformance relation adopts the approach presented in [10] for matching Se-
mantic Web services’ capabilities, which identifies several degrees of matching: (i) 
exact; (ii) plug in, where the provided capability is more general than the requested 
one, thus it can be used; (iii) subsume, where the provided capability is more specific 
than the requested one, thus it may be used in combination with another Web service 
complementing the missing part; and (iv) fail. As we are assessing conformance be-
tween two peer components, we exclude case (iii). Our conformance relation requires 
that inputs of a required capability be a superset of inputs of the associated provided 
capability, while outputs of a required capability be a subset of outputs of the associ-
ated provided capability. This refers to both the number of equivalent inputs and out-
puts and to subsumption relations between mapped inputs and outputs. Equivalence 
and subsumption are asserted by semantic reasoning, where the degree of similarity 
may be measured as the distance between concepts in an ontology hierarchy. This 
approach ensures that a service is fed at least with all the needed input and produces 
at least all the required output. 
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Interoperability method. To compose the high-level-conforming components 
resulting from the introduced conformance relation, an appropriate interoperability 
method shall be employed. To this end, we intervene in the execution properties of 
the component requiring the specific capability. First, the component providing the 
specific capability is a normal component, the executable of which integrates the 
hard-coded implementation of the conversation and messages associated to the 
capability. Thus, this component exposes a normal specific functional interface. 
Regarding the component requiring the specific capability, its executable is built 
around this capability, which may be represented as a high-level local function call. 
This component integrates further an execution engine able to execute on the fly the 
specific conversation associated to this capability and supported by its peer 
component. Thus, this component comprises a specific part implementing the 
component logic that uses this capability, and a generic part constituting a generic 
interface capable of being composed with diverse peer interfaces. The execution 
engine shall be capable of: 

− Executing the declarative descriptions of conversations; to this end, execution 
semantics of the π-calculus descriptions are employed;  

− Parsing the incoming messages and synthesizing the outgoing messages of the 
conversation based on the syntactic information provided by classes PrmType, 
PrmPosition and PrmValue; access to an external type ontology may be nec-
essary if the type system of the peer is different to the native type system; 

− Associating the inputs and outputs of the required capability to their corresponding 
message parameters; this is based on semantic mapping with the inputs and outputs 
of the remote capability, which are directly associated to message parameters; con-
version between different types or between different type systems may be required. 

It is clear from the above that for components it is not necessary to provide mes-
sages and message parameters – at least parameters that are not capability inputs or 
outputs – with semantics. 

The introduced component-level interoperability method shall be employed in 
combination with the connector-level interoperability method discussed above to 
ensure service interoperability. It is apparent from the above that the component-
level method is more adaptive and can resolve higher heterogeneity than the con-
nector-level one, which is appropriate for components, considering their diversity. 
On the other hand, the connector-level method permits lower heterogeneity, which 
is normal for connectors, which shall not be allowed to deviate significantly from 
the behavior expected by the overlying component. By locating the connector cus-
tomizer on the side of the component requiring a specific capability, this component 
becomes capable of adapting itself at both component and connector level to the 
component providing the specific capability. Employing dynamic schemes for the 
instantiation of connectors as the one outlined in the previous section would make 
this adaptation totally dynamic and ad hoc. 
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Example. We will now complete the e-shopping service example by applying the 
introduced component-level conformance relation and interoperability method. In 
Section 4.1, we specified connector CConn2 within the customer ontology. We 
complete the customer ontology by defining capabilities for the customer component 
and a second connector. As discussed above, the customer component will be 
specified only at capability level. We assume that the customer component requires 
the capabilities Get and NewRelease, which also concern buying an article and 
registering for notification of new releases of articles. 

Component Customer 
   requires {Get, NewRelease} 
RequiredCpb Get 
   inputs {ArticleData, Address, PaymentData, Customer-
Profile} 
   outputs {ArticleData, Ack} 
RequiredCpb NewRelease 
   inputs ArticleData 
   outputs ArticleData 

To assert conformance between the customer and the vendor component with respect 
to capabilities Get and Buy or NewRelease and Available, semantic matching 
shall be sought for the compared capabilities and their inputs and outputs.  

We discuss the case of Get and Buy. We assume that there exists a commerce 
ontology specifying among other the class Purchase, as one of the activities in-
cluded in commerce. Furthermore, we assume the existence of a specialized ontol-
ogy describing the specific articles being sold by the vendor component and possi-
bly sought by the customer component. Finally, a payment information ontology – 
describing payment methods, such as by credit card, by bank transfer, etc. – and a 
location information ontology are available. Having – independently – defined 
capabilities Get and Buy as direct or less direct descendants of class Purchase 
enables the assertion of their conformance. In the same way, ArticleData may 
be mapped to ArticleInfo if the vendor component sells what the customer 
component seeks to buy; the same for the couple Address-ShippingInfo. 
PaymentData can be found to be more general than CreditCardInfo in the 
payment information ontology. This means that the customer component is capable 
of managing as well other payment methods than by credit card, which is required 
by the vendor component. This is in accordance with our conformance relation. We 
may further see that Get additionally inputs CustomerProfile, which is not 
required by Buy, and Buy additionally outputs ReceiptId, which is not required 
by Get. This, too, is in accordance with our conformance relation. 

To be able to use the remote capability Buy, the customer component shall have 
a connector (e.g., CConn1) conforming to VConn1. Then, the customer component 
will execute the declarative conversation associated to Buy in the way detailed 
above. 
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5   Related Work 

In the last couple of years there has been extensive research towards semantic model-
ing of services. This research has mostly been focused on adding semantics to Web 
Services, which, as presented in Section 2.3, is the dominant paradigm for service-
oriented architectures on the Web. Hence, there are a number of efforts towards Se-
mantic Web Services. The most complete effort concerns OWL-S, which was out-
lined in Section 2.4. In this section, we compare our approach with OWL-S and dis-
cuss OWL-S-based and non-OWL-S-based efforts. 

OWL-S defines an ontology for semantically describing Web Services in order to 
enable their automated discovery, invocation, composition and execution monitoring. 
From our standpoint, this may be regarded as enabling application-level interoperabil-
ity. Our work has aimed at introducing semantic modeling of mobile services in order 
to deal with the interoperability requirements of mobile distributed systems. This has 
led us to elaborate a comprehensive modeling approach that spans both the applica-
tion and middleware level. Furthermore, our modeling considers services from a 
software architecture point of view, where services are architecturally described in 
terms of components and connectors. This abstracts any reliance on a specific tech-
nology, as on Web Services in the OWL-S case. We compare further our approach 
with OWL-S in the following.    

Our modeling of provided capabilities along with their inputs and outputs may be 
mapped to the OWL-S service profile. Both describe the high-level functionalities of 
services and may be used for discovering services, thus, for matching or conformance 
verification. We additionally explicitly model required capabilities for a component, 
which is done implicitly in OWL-S, e.g., for an agent contacting Web services. As 
further discussed in Section 4.2, OWL-S enhances the description of capabilities with 
preconditions and effects, which we consider integrating into our approach. 

Our modeling of conversation and component-level messages may be mapped to 
the OWL-S process model. We have opted for a well-established process algebra, 
such as the π-calculus, which allows dealing with dynamic architectures [27] and 
provides well-established execution semantics. The OWL-S process model provides a 
declarative, not directly executable specification of the conversation supported by a 
service. One has to provide external execution semantics for executing a process 
model, which has been done, for example, in [22]. The OWL-S process model de-
composes to atomic processes, which  correspond to WSDL operations. Our modeling 
employs component-level messages, which make no assumption of the underlying 
connector. The types of the inputs and outputs of an OWL-S atomic process are made 
to correspond to WSDL types, which are XML Schema types. This restricts the em-
ployed type system to the XML Schema type system. Our approach enables using 
different type systems, and, further, heterogeneous type systems for the two peer 
components. 

Our modeling of connectors may be mapped to the OWL-S grounding. The OWL-
S grounding is restricted to the connector types specified by Web Services, which 
comprise an interaction model prescribed by WSDL on top of the SOAP messaging 
protocol, commonly over HTTP. As WSDL 2.0 has not yet been finalized, the current 
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version of OWL-S relies on WSDL 1.1, which supports only two-way synchronous 
operations and one-way operations. The WSDL 1.1 interaction model does not sup-
port, for example, two-way asynchronous interactions or event-based interactions, as 
has been indicated in [1]. WSDL 2.0 will allow greater flexibility in its interaction 
model. Nevertheless, our approach enables the use of any connector type, which is 
modeled by the connector-level part of our mobile service ontology; this allows any 
interaction model, interaction protocol and addressing scheme. Finally, our approach 
enables using different type systems for connectors and, further, heterogeneous type 
systems for the two peer connectors, while WSDL and SOAP rely on the XML 
Schema type system. 

Work by Carnegie Mellon University described in [26] is the most complete effort up 
to now in the OWL-S community; the authors have realized an OWL-S based architec-
ture for automated discovery and interaction between autonomous Web services [19]. 
Discovery is based on the matching algorithm detailed in [10], which has been adopted 
by several other efforts in the literature. The main features of this algorithm were dis-
cussed in Section 4.2; as stated there, our component-level conformance relation incor-
porates some of the principles of this work. However, this matching algorithm does not 
exploit the full OWL-S representation of services in terms of inputs, outputs, precondi-
tions and effects; preconditions and effects are not employed. Interaction between 
autonomous Web services is based on an OWL-S (formerly DAML-S) virtual machine 
[28], which is capable of executing OWL-S process model descriptions. As mentioned 
above, execution is based on the execution semantics defined by the authors in [22]. The 
virtual machine integrates OWL reasoning functionality to be able to interpret and syn-
thesize messages. Its implementation is based on the DAML-Jess-KB [14], an imple-
mentation of the DAML (a predecessor of OWL) axiomatic semantics that relies on the 
Jess theorem prover [13] and the Jena parser [15] to parse ontologies and assert them as 
new facts in the Jess Knowledge Base. Our component-level interoperability method 
employing an execution engine capable of executing the π-calculus descriptions of 
service conversations can certainly build upon tools and experience coming from this 
work. Nevertheless, as it realizes a more general conceptual model, our approach ad-
dresses also connector-level interoperability. 

In the work presented in [18], the authors elaborate an ontology-based framework 
for the automatic composition of Web Services. They define an ontology for describ-
ing Web services and specify it using the DAML+OIL language (a predecessor of 
OWL). They further propose a composability model based on their service ontology, 
for comparing the syntactic and semantic features of Web services to determine 
whether two services are composable. They identify two sets of composability rules. 
Syntactic rules include: (i) mode composability, which compares operation modes as 
imposed by WSDL, that is, two-way synchronous operations and one-way operations; 
and (ii) binding composability, which compares the interaction protocols of commu-
nicating services, e.g., SOAP. Semantic rules include (i) message composability, 
which compares the number of message parameters, their data types, business roles, 
and units, where business roles and units represent semantics of parameters; (ii) op-
eration semantics composability, which compares the semantics of service operations; 
(iii) qualitative composability, which compares quality of service properties of Web 
services; and (iv) composition soundness, which semantically assesses whether com-
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bining Web services in a specific way is worthwhile. The introduced service ontology 
resembles our mobile service ontology, while it additionally represents quality of 
service features of services. However, what is lacking is representation of service 
conversations; actually, in this approach, services are implicitly considered to support 
elementary conversations comprising a single operation. These operations are em-
ployed into an external workflow to provide a composite service produced with a 
development time procedure. Additionally, there is no attempt to provide interopera-
bility in case that the composability rules identify incompatibilities. Composability 
rules are actually used for matching existing services to requirements of the compos-
ite service. Same as the other approaches adding semantics to Web services, this ap-
proach treats only application-level composability. 

6   Conclusion 

Mobile distributed systems are characterized by a number of features, such as the 
highly dynamic character of the computing and networking environment due to the 
intense use of the wireless medium and the mobility of devices; the resource con-
straints of mobile devices; and the high heterogeneity of integrated technologies in 
terms of networks, devices and software infrastructures. To deal with high dynamics, 
mobile distributed systems tend to be dynamically composed according to the net-
working of mobile services. Nevertheless, such a composition must be addressed in a 
way that enforces correctness of the composite systems with respect to both func-
tional and non-functional properties and deals with the interoperability issue resulting 
from the high heterogeneity of integrated components. The Semantic Web paradigm 
has emerged as a decisive factor towards interoperability, which up to then was being 
pursued based on agreements on common syntactic standards; such agreements can-
not scale in the open, highly diverse mobile environment. Related efforts elaborating 
semantic approaches are addressing application-level interoperability in terms of 
information and functionality. However, interoperability requirements of mobile dis-
tributed systems are wider, concerning functional and non-functional interoperability 
that spans both middleware and application level. 

Towards this goal, we have introduced semantic modeling of mobile services based 
on ontologies, addressing functional properties of mobile components and associated 
wireless connectors. We have further elaborated conformance relations over compo-
nent and connector models so as to be able to reason on the correctness of the compo-
sition of peer mobile services with respect to offered functional properties. Our con-
formance relations enable identifying partial conformance between components and 
between connectors, thus reasoning on interoperability. Based on these conformance 
relations, we have further specified appropriate interoperability methods to realize 
composition and interoperation of heterogeneous mobile services. Nevertheless, our 
modeling needs to be complemented with specification of the non-functional behavior 
of services and definition of related ontologies. We plan to do this building on our 
previous work described in [6], which has identified key non-functional features of 
the mobile environment. 

As discussed and demonstrated in this paper, ontologies enable a rich representa-
tion of services and a common understanding about their features. As discussed in the 
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OWL specification10 and in [17], there are two advantages of ontologies over simple 
XML schemas. First, an ontology is a knowledge representation backed up by 
enhanced reasoning supported by the OWL axiomatic semantics. Second, OWL 
ontologies may benefit from the availability of generic tools that can reason about 
them. By contrast, if one built a system capable of reasoning about a specific 
industry-standard XML schema, this would inevitably be specific to the particular 
subject domain. Building a sound and useful reasoning system is not a simple effort, 
while constructing an ontology is much more manageable. The complex reasoning 
employed in the example of Section 4.1 to assert conformance between connector 
interaction models would not be easy to implement based simply on XML schemas. 

OWL reasoning tools shall be employed by the introduced conformance relations 
and interoperability methods. A number of such tools already exist, such as the ones 
discussed in the previous section. Conformance verification needs to be integrated 
with the runtime system, i.e., the middleware, and be carried out online. Interoperabil-
ity methods further involve processing and communication cost upon their function-
ing, but also upon their dynamic instantiation, as discussed in Section 4.1; they shall 
as well function with an acceptable runtime overhead. These requirements are even 
more challenging if we take into account the resource constraints of wireless devices. 
A number of techniques need to be combined in this context, including effective tools 
for checking conformance relations and lightweight interoperability mechanisms in 
the wireless environment, possibly exploiting the capabilities of resource-rich devices 
in the area so as to effectively distribute the load associated with the dynamic compo-
sition of mobile services. We are thus currently investigating base online tools and 
techniques to support open, dynamic system composition, while keeping the runtime 
overhead acceptable for wireless, resource-constrained devices. 

In the spirit of the general principles identified for connector modeling and connec-
tor interoperability, we have already elaborated preliminary work towards middleware 
interoperability. Specifically, we have studied service discovery protocol interopera-
bility in the open mobile environment [12]. This solution employs a mapping of sev-
eral standard service discovery protocols (SLP [7], UPnP11, Jini [8]) on semantic 
events. This approach includes dynamic instantiation of the appropriate connector 
customizer, as discussed in Section 4.1. This work is currently being extended to 
interoperability between standard middleware communication protocols (SOAP, 
RMI). 
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Abstract. Various forms of agreements naturally arise in the service
provider model as well as in multi-party computing models such as
business-to-business, utility and grid computing. The role of these agree-
ments is twofold: they stipulate obligations and expectations of the in-
volved parties, and they represent the goals to be met by the infrastruc-
ture. As a consequence of this latter point, in order to automate run-time
adaptation and management of systems and services, agreements should
be encoded and integrated in management software platforms. In this pa-
per, we review the state of the art in software support for various forms
of agreements, for all stages of their life-cycle. We also review emerging
platforms and technologies in standard bodies, industries and academia.

1 Introduction

We will argue and illustrate in this paper that distributed computing infras-
tructures must incorporate agreements as first-class software building blocks to
support automated adaptation and management in the presence of multiple (pos-
sibly competing) interests. These agreements represent expectations and obliga-
tions of various partners about the functionality and performance of systems and
services. Additionally, these agreements are means to set the objectives for auto-
mated decision-making in system adaptation and management. It can therefore
be useful for an IT operator to formulate objectives in the form of agreements
even if no other parties are exposed to this information.

Modern-day and emerging computing infrastructures are increasingly flexible
in their support of computational and business models, as witnessed by the
developments of adaptive and on-demand computing solutions advocated by
HP, IBM, Oracle, SUN and others. These solutions typically envision a service
provider model for various aspects of computing, such as CPU use, network use,
application hosting, etc. As software platform, such solutions are often tied to
the grid [20], which supports resource sharing across multiple parties using open
software. This software virtualises resources and applications, thus shielding the
customer from the complexities of the underlying infrastructure and providing
the operator with tools to adapt the system gracefully at run-time.
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To enable the mentioned multi-party computing models the supporting soft-
ware infrastructure should make use and keep track of the agreements established
between parties. Therefore, it should embody these agreements in software. Such
run-time agreements can come in various shapes or forms (at times we will use
the adjective ‘run-time’ to stress that we discuss software embodiments of agree-
ments, used at run-time to manage the execution of services). For instance, a
run-time agreement can be defined by an operator to represent aspects of a
hard-copy contract signed between provider and customers. Alternatively, the
run-time agreement represents agreed-upon service levels automatically negoti-
ated by software agents of the provider and customer. Irrespective, the infor-
mation in the agreement can be used throughout the platform as needed, e.g.,
to adapt the system to meet service levels while optimising profits. Agreements
thus naturally fit the service provider model, but also provide the necessary in-
formation to allow for automated decision-making by management software and
self-managing components and services.

Since this article has been prepared for the series of books on architectures
for dependable systems, it is opportune to address the relation of agreements
with both dependability and architectures. The notion of architecture used in
this paper relates to the structure of software platforms (middleware). These
architectures will be heavily influenced by the emergence of the service provider
computing model (including utility or on-demand computing), and by an in-
creased pressure to automate system operation and hence save operational cost.
We foresee a prominent role for agreements, which will be integrated in such
architectures and will be represented as objects, services or other software com-
ponents. Once these are in place, they define the objectives to be used in the
algorithms that adapt systems and services.

With respect to dependability, run-time agreements play a double role, as
indicated above. On the one hand, agreements must be available in system op-
erations software to determine how to adapt the system, also in response to
failures. This entails further automation of the processes traditionally involved
in fault management. On the other hand, agreements are a way of providing
trust in the system, by allowing customers to express their interests, and by pro-
viding them with information about whether the agreements are met (possibly
through a trusted third party).

There are many open issues in the technologies required to support run-time
agreements. The emphasis in this paper is on a survey of existing and ongoing
work related to software architectures, with pointers to remaining research issues.
The survey is extensive, but arguably not exhaustive because of the vastness of
the area we want to cover. In Section 3 we discuss technologies in (1) specifi-
cation, (2) provision, (3) monitoring, (4) adaptation and (5) resolution, roughly
following the life cycle of typical agreements. Table 1 summarizes our findings. In
Section 4 we then discuss representative solutions proposed by standards bodies
(WS-Agreement in the Global Grid Forum), industries (Hewlett Packard and
IBM enterprise IT) and academia (TAPAS, an EU research project). To set the
stage, we first discuss terminology used in this paper and in the literature.
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2 Definition and Terminology

In this paper we research the software embodiment of contracts or other types
of agreement or objectives. As mentioned above, at times we will use the term
run-time agreement to stress we are concerned about utilising these agreements
during service execution. We define run-time agreement as follows.

A run-time agreement is a machine interpretable representation of
agreed-upon service characteristics or objectives, established between
two (logical) parties. These run-time agreements are used as the goals
that drive some form of automation. For this purpose, multiple run-time
agreements may be combined to establish the overall objective.

Software embodiments of agreements have been proposed and implicitly used
in various places, predominantly in the area of policy-based management. For
instance, in the Gallifrey project at Bell Labs [7], goals bound to policy rules
form first class objects in the software architecture. However, most policy work
(see [35] for a survey in network management) focuses on the rules instead of
goals [8].

With the emergence of the service provider model, the distinction between
goals and rules becomes much more important. It does not make sense for a
customer of a utility computing data centre to set policy rules that manage
the system. Instead, this is the responsibility of the service provider, and as a
consequence policy rules and agreed-upon objectives must be decoupled. It also
is not appropriate to assume that written documents can be used to define the
service level agreements, and that operators manually adapt policies based on
these documents. Utility computing or other service provider operations can be
expected to be much too dynamic to allow such slow processes.

The consequence of the above is that open software and standards are emerg-
ing that allow run-time agreements to be exchanged between parties. The utility
system is then managed and adapted based on these run-time agreements. Even-
tually, we expect system management to be so intimately tied to run-time agree-
ment that operators and administrators will introduce additional agreements in
the system, to modify the goals driving the management system. In this process,
system operators move more and more from defining and refining policy rules to
defining and refining goals (as advocated in [8], among others).

It may be good to compare our definition of agreement with existing related
terms and definitions, for instance the definition of service level agreement (SLA)
in IETF RFC 3198 [61]. There, a service level agreement is defined as “the doc-
umented result of a negotiation between a customer and a provider of a service,
that specifies levels of Quality of Service or other attributes of the service.” A
service level objective is “a set of parameters and their value.” This is a very
natural definition, although the explicit requirement that parties negotiate is not
always valid in our setting.

More important is the fact that in the current paper, we consider machine-
interpretable agreements, and focus on run-time software components represent-
ing agreements. This was not the objective behind RFC 3198. Note furthermore
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that the RFC 3198 definition also points to QoS, which is a typical connota-
tion when SLAs are concerned. In this paper we do not restrict the contents
of run-time agreements to QoS. For a good understanding, it is important to
realise that (service level) agreements are not synonymous to QoS. QoS is about
metrics (performance, up-time, throughput), which may or may not be used in
an agreement or SLA to specify expected values, associated penalties, etc.

It is also of interest to clarify the relationship between policies and agree-
ments, since both are often used in system management. The term policy usually
refers to “a plan of actions” [31], while agreements are used to denote a set of
goals. Ideally, the goals represented in run-time agreements should determine
(or be used to parameterise) the actions suggested by the policies (see [8] for
a further discussion of this topic). However, it is important to note that agree-
ments can also be used for adaptation of a system by other means than policies,
e.g., using games, auctions or run-time mathematical optimisation algorithms
(see Section 3.4).

3 Software Infrastructure Requirements

We discuss requirements for software support of agreements in five groups,
roughly corresponding to stages in the life-cycle of an agreement.

1. Specification. Languages and formalisms for expressing the agreement,
choice of metrics, negotiation, run-time embodiment.

2. Provision. Automated and customised deployment of resources and mon-
itoring tools, dealing with resource scarceness.

3. Monitoring. Techniques and tools for collecting performance metrics, al-
gorithms for evaluation of performance, violation detection, third-party in-
volvement, data exchange protocols.

4. Adaptation. Decision-making about new requests and adapting resource
allocations, automated response to changes, business-driven adaptation,
alarm handling, self-management and autonomic management.

5. Resolution. Auditing and non-repudiation, validity of and changes in
agreements, conflict resolution.

Within each item, we touch on a diverse range of issues, from dependability
requirements and automation needs to standardisation and third-party solutions.
Table 1 summarizes our findings.

3.1 Specification

There is a large body of literature available on the specification of service level
agreements, but far less on the formatting of a run-time agreement as a software
building block, for instance through the definition of interfaces. The latter is of
particular interest to us, since it determines the information the software plat-
form makes available for automation. The obvious exception is WS-Agreement,
which we discuss in Section 4.1.
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Table 1. State of the art and open issues

Status Open or Underdeveloped Issues
Specification -threshold SLAs in commer-

cial management software
[45,48]
-QoS languages [2,17,19,21]
[28,34,53,55]
-WSLA [15,33] adopted in
WS-Agreement [3]
-WSOL extension to WSDL
[57]

-practical mix of expressiveness and sim-
plicity
-tool support to define agreements [34]
-penalties and rewards [16,62]
-business metrics and business-driven
management [9,11,36,62]
-(domain-specific) ontologies
-(automated) negotiation [27,30]

Provision -job and workload scheduling
[41]
-resource provision [2,5,22,49]
-monitoring provision [15,53]

-mapping (business) metrics on resource
needs [16,36]
-inclusion of QoS concerns [2,5,18]
-domain or product-specific deployment
templates [22]

Monitoring -automatic monitor ignition
[15,39,53]
-third-party monitoring [46]
-threshold alarms [45]

-measurement exchange protocols [37]
-business-driven monitoring [9,11]
-performance assessment [41]
-scaling to very large scale networks
-techniques to enhance trust

Adaptation -(on-line) optimisation algo-
rithms [42,54]
-dynamic resource allocation
[5,13,41]
-domain-specific research pro-
totypes [12,50,51]

-guaranteed end-to-end QoS [47,51]
-signalling protocols [18,37]
-aggregated objective from multiple
agreements
-secure sharing of agreements within and
across platforms
-service definition extension with adap-
tations [24,32]
-self-management, emerging behaviour
[6,23,26,59]

Resolution -customer credits [46]
-non-repudiation with trusted
third party [14]

-changing and terminating agreements
-resolution protocols
-enhanced trust solutions

We envision many run-time agreements to be present at any point in time,
representing agreements with different customers and possibly additional
provider objectives. In software terms, each run-time agreement may be rep-
resented by an object or a service, or they will be aggregated into one software
component to make them simpler to track. Irrespective, to be useful for au-
tomation run-time agreements must contain enough information to facilitate
decision-making: sufficiently detailed statements about expected functionality,
exact enough quality-of-service parameters and values, and reward and penalty
information for met and missed objectives. The latter is particularly important:
without rewards and penalties a decision-making unit can not make trade-off
decisions in times of scarcity. A serious shortcoming in many current agreement
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specification efforts (WS-Agreement is an exception) is the lack of attention
paid to rewards and penalties, possibly expressed in monetary values [9,11,36].
This ultimately will result in suboptimal decisions during the adaptation phase
(discussed below).

In the web services area service descriptions and workflow-style service defini-
tions are commonplace through the Web Service Description Language (WSDL),
Business Process Execution Language, and similar efforts [1]. For every client of
the web service, the web service run-time system maintains information to man-
age the interactions with the client. Arguably, this corresponds to maintaining a
run-time agreement, as we defined in Section 2. Two approaches can be thought
of to populate such run-time agreements with sufficient information for system
management. First, one can leave it to the operator to provide the management
system with additional information about priorities across customers, QoS guar-
antees for customers, rewards and penalties for meeting and missing objectives,
etc. This will require operator tools to facilitate inputting such information. It
is not impossible that commercial software vendors are thinking in this direc-
tion, although we are not aware of other efforts than the WS-Agreement related
research demo Cremona [34].

Alternatively, one can extend the service definition with additional informa-
tion, as is done in Web Service Offering Language (WSOL) [57]. WSOL is fully
compatible with the WSDL description language and extends WSDL with capa-
bilities relevant to service offerings. A key concept in WSOL is that of classes of
services, which are defined as services of the same functionality but with different
constraints. The goal behind this concept is to cater for customers with different
budgets and needs. Thus WSOL envisions that a web service offers a service S
as a set of classes c1, c2, ..., cm, where ci and cj offer the same functionality but
differ in terms of constraint parameters.

Other related work has been focused predominantly on unambiguous rep-
resentation of QoS metrics [21,33,53,55], sometimes through the application of
formal methods [19,39]. For a recent overview of QoS definition technologies we
refer to [17,28]. Of course, no matter which formal approach is used, the prob-
lem of semantic meaning of objectives will remain, and it may therefore be that
intricate or complete languages will lose out in practice to descriptions with suc-
cinct but sufficient expressiveness. Furthermore, it may be needed to invest in
domain-specific ontologies for agreements, scoped such that one can achieve a
reasonably precise and widely-accepted understanding of terms in the domain of
concern.

3.2 Provision

In this section we consider the first phase in run-time use of agreements, namely
the provision of the service specified in the agreement as well as the provision of
the monitoring software to verify if an agreement is being met.

In terms of the software architecture we can identify a range of possible
approaches to standardisation of provision software. On one end, the specifi-
cation of a service interaction, or of resource usage, is given in the form of a
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file, typically human readable for reasons of convenience. Examples of this are
typical usage scenarios for the grid job submission description language [4], or
utility computing definitions in the SmartFrog language [22]. Alternatively, the
agreement is represented by a first-class software object (or service) with stan-
dardised interfaces. This leaves a more powerful interaction paradigm and is the
idea behind WS-Agreement, which we discuss in detail in Section 4.1. Of course,
independent of the chosen approach, the provision system needs to keep track
of the various agreements in its software.

Provision systems such as SmartFrog predominantly focus on core tasks be-
hind service provision, such as loading, initialising and starting software com-
ponents, in prescribed order. Many challenges exist when one needs to provide
for additional agreement parameters such as QoS, although research attempts
exist in various domains [2,5,18,50]. When we review the technologies of HP and
IBM in Section 4, we see these are driven by utility or on-demand computing
opportunities [29]. The key enabler of utility computing is software for auto-
mated provision, such as SmartFrog [22] and Oceano [5]. Enrichment of such
software to be governed by agreements is needed to deliver on the promise of
fully automated management in multi-party setting.

Monitoring provision. Much of industry research in the area of monitoring
has been concerned with automatically igniting monitor activities, that is, with
automated provision of monitoring. This emphasis is understandable, since one
of the major barriers in using monitoring software is the effort required to in-
strument systems and initiate the monitoring. A well-specified agreement is an
excellent tool to determine what monitoring is needed. The challenge is not to
specify the required monitoring, but to infer from the agreements which moni-
toring software should be started up, who is in charge of the monitoring, when
alarms should be generated and when SLA breaches occur. This idea is described
in [37,53] in the context of web services.

3.3 Monitoring

When run-time agreements are used to guide system or service management, the
issue of monitoring can be dealt with in straightforward manner. An abundance
of monitoring tools is available to collect metrics from almost all elements in the
infrastructure, both commercial, e.g., [40], and Open Source [60]. As we indicated
above, the challenge lies in automatically igniting the correct monitoring software
based on the specification of the present run-time agreements [37,53].

When multiple parties are interested in the monitored data, matters im-
mediately become much more intricate. Each metric in the agreement will be
monitored at one of the two parties, and the results will be reported to the other.
The question then is why the second party should believe the reported results.
All present solutions to this problem rely on a trusted third party [14]. At some
level, a trusted third party is unavoidable, but trust-enhancing techniques for
non-repudiation, privacy and authenticity remain of prime interest.
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Especially when relying on trusted third parties it is desirable to allow agree-
ments to be dynamically initiated, without cumbersome set-up procedures in-
volving the third party. This implies that protocols must be in place to exchange
the needed set-up information and credentials, disseminate data to the right par-
ties, and issue actions to adapt the monitoring software to the new agreements.
A possible solution to the problem is the introduction of a signalling network
overlay, such as the ones proposed in the context of differentiated IP services
[18] and web services [37].

One step beyond monitoring is the inference of agreement violations using the
measured data [45]. Based on this inference, corrective actions can be triggered
and remaining disputes can be dealt with. Potentially, one can build such a
full-blown agreement violation management system as a service, which retrieves
metrics from the databases of the measurement service, performs computation
on them, compares the results of the computation against high or low thresholds
and sends notifications of violations to the interested parties when violations of
agreements are detected. This service then acts as a trusted third party, as we
will discuss in Section 3.5 when we discuss resolution.

3.4 Adaptation

To be useful at the adaptation stage the agreements must provide management
software with the necessary information for system adaptation. The ability to
adapt a system based on the existing agreements is the key behind the autonomic
and adaptive infrastructure proposals from IBM and HP, as we will discuss in
Section 4. However, in reality, current research and developments rarely con-
sider automated adaptation as the goal for agreements, and it can therefore be
expected that the current specification languages need to be modified to appro-
priately specify all elements needed for automated management. As an example,
trade-off decisions require an understanding of rewards and penalties, but many
agreement specifications ignore such aspects.

We envision automated management at the service provider site to be effec-
tively hidden from the customer. However, one could take a different perspective
and assume that the service or workflow description of the service includes a speci-
fication of adaptations, and are thus visible to and possibly parameterisable by the
customer. Technologies based on such an approach have been proposed in [24,32].

There is a rich body of literature on adaptive middleware to guarantee QoS
properties (e.g., [12,50], a survey can be found in [51]). For various application
areas interesting result are available from these projects. The current paper takes
a more generic view at adaptive systems, targeting open software platforms for
general-purpose computing.

Mathematical optimisation algorithms can be used on-line and at run-time
to optimise the actions taken by the adaptive system. The use of such algorithms
has been considered by many authors, sometimes based on SLA specifications,
e.g., [2,7,13,54,58]. However, none of this work has been concerned with how to
integrate such techniques in an open standardised software architecture. Such a
software architecture for mathematical decision making algorithms would have
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to deal with reliability, scalability, privacy and many other issues. It is therefore
of particular interest to study the implications of distributing the optimisation
algorithms. An interesting first step to approach the mathematical and system
issues can be found in [42].

Mathematical optimisation modules as mentioned above provide an infras-
tructure for run-time adaptation of systems, but provide no protocols or message
exchange mechanisms to let adaptation ‘emerge’ in the system. Instead, it pro-
vides optimisation outside the system, aiming at a global optimum. In [26] it is
argued that this is not true self-management, and does not resolve the scalability
issues we will face in the management of truly large-scale systems. Indeed, as dis-
cussed at length in [59], none of the architectures discussed in Section 4 achieves
management based on emerging behaviour. If this lack of self-management in-
deed turns out to hurt scalability, research in biologically or socially inspired
emerging behaviour in computing systems may be of interest, e.g., [6].

3.5 Resolution

The final stage of agreement-based management is the termination and after care
of the agreement. Obviously, this is particularly important if there are disputes
to settle between parties. But also in case of undisputed agreements, dismantling
of the monitoring and adaptation software needs to be taken care of, without
introducing security and privacy vulnerabilities. To the best of our knowledge,
no research about dismantling agreements exists, but it is an important issue.

Related is the issue of introducing changes to existing agreements, realised to
be very challenging but not yet much researched. Issues arise about when exactly
the new agreement is considered to be agreed upon, since it is not always possible
to specify a time instant or unambiguously specify the event that determines
the instance the agreement holds. Similar, at what exact moment does the old
agreement terminate, and when and how does one dismantle the monitoring and
adaptation software? A substantial amount of research will be needed to find
practical solutions for these problems.

In practice, a trusted third party is often considered the appropriate approach
to determine if agreements have been met [46]. The term ‘trusted’ implies that
all parties involved believe monitoring conducted by a trusted third party is
done correctly, consequently, they consider outcomes coming from the trusted
third party to be authoritative. Based on this idea, one can imagine business
models around trusted third parties that monitor, report and discover violations
(compare this with similar monitoring products and services for traditional web
sites from companies like Keynote and AlertSite.com).

A property one would like to establish when information is being exchanged
between customers and providers is that of non-repudiation. Non-repudiation en-
sures that the party distributing the information can not successfully deny at a
later stage knowing about this information. Of particular interest is the recent
work of Cook et. al. [14], which introduces trusted interceptors to achieve non-
repudiation. These interceptors insert signatures, and have a protocol for all par-
ties to agree in non-repudiableway on informationupdates (e.g., monitoring data).
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If future systems exhibit the amount of dynamism we envision in this paper,
agreements come and go at fast pace and in large numbers. When third parties
are involved additional protocols are needed to deploy the monitoring software
from the third party, exchange data and pass on warnings and other information
to the interested party [37]. Hence, as for all other stages, also for the resolution
stage one can imagine protocols to be developed that take care of issues that
involve multiple parties. For instance, these protocols could report violations
and distribute credits to customers if agreements are not met. Such scenarios
are speculative, but open up interesting research opportunities.

4 Existing and Emerging Architectures

Service level agreements are already main stay for IP back bone service providers.
For example, Sprint openly publishes SLAs as well as measured past performance
and availability on the world wide web [56], as do other backbone providers.
The used metrics concern delay, jitter, packet loss and data delivery percentage.
Backbone providers are willing and able to guarantee, measure and expose ser-
vice levels because the service they deliver is under their control, not requiring
a third party for networking (but of course relying on power supply, hardware
and software reliability, etc.). Also when acquiring a virtual private network
(VPN) an SLA is commonly agreed upon between customer and provider [46].
GTE Networks reportedly uses a third party for monitoring, and provides ‘cred-
its’ to customers when SLAs are not met [46]. All contracts signed between
customers and providers contain caveats related to dependency on other par-
ties in the service delivery. A staggering amount of metrics and disclaimers can
for instance be found in JANET’s SLAs for the UK’s higher education net-
work [25].

A recent study suggests that SLAs are becoming increasingly prevalent in
outsourcing deals, some bigger companies reporting to have more than one thou-
sand SLAs closed for their outsourced IT [52]. Remarkable enough, SLA moni-
toring is still in its infancy and some times non-existing [52], but that apparently
does not negate the value of agreeing on an SLA. In general, one would expect
that the service provider model will provide a further push for deployment of
SLAs.

All the above has had relatively little influence on the software architectures
on which services are build. This must change when the services become more
complex and the service usage becomes more dynamic. If customers come and go
continuously (for instance when using computing equipment for scientific com-
putations) or when the application is extremely intricate (for instance when cus-
tomers are load balanced across application servers), integration of agreements
in the software architecture becomes necessary. In what follows we discuss some
important existing and emerging software solutions that aim at that vision.
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Fig. 1. View of WS-Agreement contents and layering

4.1 Global Grid Forum

Web services are becoming a popular infrastructure for developing distributed
systems, particularly in Internet and Intranet setting. One of the distinguishing
features of web services is the large number of activities hosted in standards
bodies defining specific functions which can be combined to create an extremely
rich environment. Agreements have become a part of this suite via the WS-
Agreement specification [3], which has been developed within the Global Grid
Forum (GGF).

WS-Agreement defines a structure into which an arbitrary set of agreement
terms may be placed. The key point is that agreements need not be about any
specific type of service (such as a web service), and so can be created and main-
tained independently of other services. This, in turn, implies that existing service
infrastructures need not be changed to introduce agreements. This imposes the
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layered model shown in Fig. 1. The service layer on the bottom represents the
service which is the subject of the agreement. The WS-Agreement model does
not change this interaction because the agreement is created, managed, and
monitored at a separate logical-layer. One can view an agreement in two ways:
as a document or as a service. In the document view, WS-Agreement defines an
XML Schema which specifies the components of an agreement. In the service
view, an agreement is itself a service which can be monitored and managed in
the same way that other services interact with one another.

WS-Agreement Contents. The agreement document contains the following
sub-sections which are also shown in Fig. 1.

– A Context contains immutable properties of the agreement as a whole. These
include who the provider and consumer of the agreement are, a completion
time for the agreement, and references to other agreements which may be
related to this one. Related agreements can be used in many ways. One use is
to refer to other agreements that are held simultaneously with this agreement
to define a larger aggregate agreement. Another is to allow parties to form
a long standing agreement with shorter term, sub-agreements defined for a
specific interaction at a particular point in time. WS-Agreement currently
does not provide any specifics for how these multi-agreement relationships
are formed, specified or monitored.

– Service Description Terms describe the service to which the agreement refers.
WS-Agreement does not specify the content of them, so they can contain any
arbitrary XML schema. In the simplest case, a description term may contain
only a reference to an existing service to which the agreement applies. In
other cases, these terms could provide detailed specifications of the functional
properties for the service to which the agreement will apply. In these cases,
it will be common for a new service to be created which conforms to these
property definitions.

– Guarantee Terms define the non-functional properties of the agreement. Like
the service description terms, WS-Agreement does not specify what the con-
tents of the guarantee terms are, but it is expected that they contain enough
information that a monitoring system could be configured to enforce the
properties of the agreement. In addition to the non-functional properties,
guarantee terms may also contain clauses referred to as ‘business value’ that
contain rewards or penalties based on a service provider succeeding or failing
in meeting the guarantees.

– Constraints are used to narrow the possible values for either the service de-
scription or guarantee terms. These are placed into an agreement document
called a template which can be published to define a providers agreement
options. The use of templates is described in more detail below.

– All of the terms are grouped by a compositor. The compositor groups the
terms, and provides a logical relationship for those terms. The relationships
are: “all of,” “exactly one of,” or “at least one of.” Compositors therefore
allow for alternative choices within the agreement document. When paired



48 C. Molina-Jimenez, J. Pruyne, and A. van Moorsel

Fig. 2. Message exchanges in WS-Agreement

with guarantee terms and business values, this allows a single agreement
document to define multiple, acceptable service levels with corresponding re-
wards. Compositors can be nested within one another providing an extremely
rich structure of alternative and required service description or guarantee
terms.

WS-Agreement Workflow. The WS-Agreement specification defines a sim-
ple workflow for the advertisement, creation and monitoring of agreements. It is
anticipated that these basic functions could be combined to perform more com-
plex interactions such as brokering or negotiation though no specific protocols
are presently defined. The basic message exchanges are shown in Fig 2.

The interchange begins when an initiator requests a template document from
an agreement provider. This template effectively defines the structure of the
agreement it supports by defining the terms and their compositor structure. The
template also gives hints to the initiator about acceptable values for those terms
via the constraints described previously. In some cases, this template could be
generated in response to each request, so the constraints could be used to reflect
the current state of the provider.

Upon receiving the template, it is up to the initiator to fill in values for the
terms which describe the desired agreement. It then sends the proposed agree-
ment document to the provider as a create request. The provider can then accept
the agreement in which case it returns a positive acknowledgement which also
contains a handle to the agreement for use in monitoring. This handle provides a
means of interacting with the agreement as a first-class service in a web services
environment. If the agreement cannot be reached, an error is returned.

The initiator can use the handle for the agreement to monitor its state. This
may be through requests to get an updated version of the agreement document
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where term values are filled in to represent the current state of the agreement.
For example, a guarantee term that specifies the performance level may be filled
in with the most recently measured performance observation.

Status. The first version of the WS-Agreement specification is complete. It has
been authored by participants from Globus, HP, IBM and Platform Computing,
and has entered the public comment period at the Global Grid Forum at the
time of this writing. The GGF working group which developed WS-Agreement
is presently working toward defining higher-levels of functionality on top of WS-
Agreement such as more complex negotiation protocols, definition of basic guar-
antee terms which are widely reusable, and possibly profiles for specific interac-
tion models such as brokering or auctioning.

4.2 Industrial Developments: HP and IBM

As we mentioned above, network providers are using SLAs extensively, but this
has had limited influence on software architectures. Instead, the recent flurry of
research and development related to agreements and software architectures is
driven by enterprise IT industry. We discuss this by reviewing the technology
strategy of two major enterprise IT companies, namely Hewlett-Packard and
IBM.

Hewlett-Packard. Since the early nineties, Hewlett-Packard has been a leading
management software vendor through its OpenView products [40]. OpenView
predominantly focuses on monitoring and visualisation of IT operations. Over
the years, the software has consistently moved ‘up the stack,’ expanding the
network monitoring functionality to include system and service monitoring. The
primary user target for this software are IT administrators and data center
operators.

Service level agreements [45] have always been part of monitoring software
such as OpenView and that from its competitors Computer Associates, IBM
Tivoli, BMC Software, etc. In a typical setting, an administrator uses SLA
thresholds to trigger alarms when performance deteriorates. If the metrics are
chosen wisely (that is, based on service or even business considerations [9]), the
SLAs assist in assuring higher level management goals. These ideas are illus-
trated well by the NetGather enhancements of OpenView from software vendor
ProdexNet [48]. However, in reality the use of SLAs is often restricted to some
of the more obvious metrics, such as basic performance and reliability metrics.
Moreover, the level of automation to deal with SLA violations is limited, mainly
targeted to triggering alarms.

Such use of SLAs is widespread in all existing management software but is of
limited consequences to the exploited software architecture. Powerfully expres-
sive SLA languages are not needed if the metrics differ little across customers,
nor are highly effective adaptation algorithms needed if the main objective is
to alarm the administrator. For HP, this has dramatically changed with the
introduction of its adaptive infrastructure software strategy.
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HP’s adaptive infrastructure envisions that future IT is flexible enough to
adapt to any form of change, from newly arriving customers to failing equipment,
from changing business demands to sharing resource ownership. To allow for such
flexibility, the proposed software architecture has three main characteristics:
virtualisation, service-orientation and automation [59]. Virtualisation enables
adaptation by substituting hardware-implemented and hard coded behaviour
with software implemented adaptive solutions. Service-orientation based on web
services is needed for standards-based interoperability, hiding of heterogeneity,
scalability and software reuse. Automation is needed to deliver on the promises of
the adaptive infrastructure vision without requiring prohibitively many highly-
educated technicians.

One can read more about these ideas in [9,59], or in the many web pages
published by HP. HP has chosen to pursue grid and web service standards as
underpinning of the adaptive infrastructure and is leading research and working
groups in GGF [3], chairs the organisation itself, and was instrumental in creat-
ing the link between web services and grid standards through their introduction
of GGF recommendations in the OASIS web services distributed management
working group [43]. Recently, HP moved from their monolithic and sizable util-
ity data center product (discontinued in 2004) to new lighter weight adaptive
infrastructure offerings based on acquired start-up technologies [44] and research
efforts [29].

Within the context of the adaptive enterprise, the main focus with respect
to agreements is on the work in the WS-Agreement working group, co-chaired
by HP, see Section 4.1.

IBM. IBM’s technology strategy is centred on the notion of autonomic com-
puting [10,23]. Autonomic computing suggests that computing systems exhibit
capabilities to recover from failures in ways not unlike the human body’s immune
system: locally initiated and emergent (that is, not dictated by a ‘big brother’
style decision maker). The main driver for autonomic computing is to limit the
amount of personnel needed to run the infrastructure, since human involvement
in IT management is expensive and often a source for failures. Part of the au-
tonomic computing strategy is a focus on on-demand computing and federation
through open, standardised web services.

The technology push from IBM is very similar to that from HP. HP’s adaptive
infrastructure is in spirit and in fact similar to IBM’s autonomic computing,
and utility computing is largely identical to on-demand computing. Also the
business models of the two companies align: from a traditional product focus, the
attention is increasingly on services for IT operations, delivered by consultants,
very often through ‘outsourcing’ deals. Also from this business perspective the
push for automation and on-demand computing fits nicely, since it makes IT
management less expensive.

IBM product technologies around self-healing storage equipment and web
server load balancing have made autonomic computing tangible. Research pro-
totypes such as Oceano [5] have provided an emphasis on software for highly
adaptive systems. With respect to software architectures, IBM focuses on web
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services and GGF grid technologies, implemented through open source proto-
types or on top of IBM’s Websphere J2EE compliant application server. The
work described in Section 4.1 on WS-Agreement is heavily influenced by IBM’s
involvement. In particular, the proposed web service level agreement specifica-
tion language WSLA [15,33] has been modified to be incorporated in the WS-
Agreement proposals.

4.3 Academic Research: TAPAS

We discuss one academic project we have been involved in since it contributes
some interesting technologies to agreement-driven service management
[14,38,39,55]. The project is called TAPAS, which stands for Trusted and QoS–
Aware Provision of Application Services, which has as one aim to develop QoS
enabled middleware capable of meeting SLAs between pairs of interacting par-
ties. It is representative for a range of adaptive middlewares, such as those sur-
veyed in [51], but is of particular interest because of its focus on the service
provider model.

In a typical TAPAS scenario a service provider provides its services to sev-
eral consumers whose access to the service might overlap. The services required
by each client are not necessarily the same and neither are the SLAs that they

InternetInternet

Contract
Service description:
The service provider (SP) will provide
1 GByte of storage to the service con-
sumer (SC) for 6 months …

II) Functional requirements
1.1 The service consumer shall pay his 
bill monthly by the 10th of the following 
month.
1.2 The service owner shall send his bill
by the 5th day of the month.

III) Non-functional requirement
1.1 Response time  shall be less than …
1.2 Max time to repair shall be less than
5 min on working days between 
08 and 21 hs.

Signature            Signature
(service owner)       (service consumer1)

service owner

service consumer1

service consumern

service

R1 R2 Rm

resources

Fig. 3. TAPAS scenario showing provider, consumers and contract
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COMPONENT MIDDLEWARE

QoS management, monitoring and adaptation

Inter-organisational
interaction
regulation

QoS monitoring
and

violation detection

APPLICATIONS

QoS enabled
application
server

Fig. 4. TAPAS architecture showing its main building components

require. As shown in Fig. 3, TAPAS assumes that the service owner is in control
of a pool of resources (R1, R2, ..., Rm) used to build the services that its con-
sumers require. Examples of these resources are cpu, disks, database, servers,
etc. Though not explicitly shown in the figure, it is assumed that some of the
resources are owned by the service provider, whereas others are hired from other
providers over the Internet.

In TAPAS interacting parties are mutually suspicious and reluctant to engage
in business interactions unguarded. Because of this, interactions are regulated
by legal contracts signed by the interacting parties. For the sake of simplicity
only one contract is shown in Fig 3, but it should be assumed that the service
provider is involved in multiple contracts, one with each consumer. As shown in
the figure, legal contracts contain, in addition to conventional contract headers,
a list of functional and a list of non–functional requirements, that describe in
conventional English prose, the rights and the obligations that the interacting
parties are expected to honour. SLAs are considered useful if their compliance is
monitored and enforced by computer means at run time. This requirement has a
significant impact in TAPAS middleware. The challenge for the service provider
is to manage his resources in order to guarantee that the contracted SLAs with
his customers are met.

A module architecture of the TAPAS platform is shown in Fig. 4. Without the
three shaded entities a fairly ‘standard’ application hosting environment would
emerge, that is, an application server constructed using component middleware
(e.g., J2EE application server). It is the inclusion of the TAPAS specific entities
that makes all the difference, as we describe.

Inter–organisation interaction regulation. This module represents the
middleware that guarantees that the functional SLAs between two interact-
ing parties are monitored and, possibly, enforced when a violation is detected.
For example, for auction applications, it guarantees that bidders place bids
only when bid rounds are declared open. The current version of TAPAS re-
alises this module as finite state machines that model the functional SLAs
of the original legal contract [39]. Conceptually speaking, this module is lo-
cated between the two interacting parties to intercept messages exchanged



The Role of Agreements in IT Management Software 53

between the interacting parties and prevent the ones that divert from the
expected sequence from reaching the receiving business partner.

QoS monitoring and violation detection. This module represents the
middleware that guarantees that the non–functional SLAs between two in-
teracting parties are monitored and notifications are sent to the interested
parties when a violation is detected [38]. For example, for auction appli-
cations, it guarantees that the time a response to a ‘PlaceBid’ operation
takes is less or equal to what is stipulated in the original legal contract. In
the current version of TAPAS, this module is realised as (logical) trusted
third parties, which periodically probe the provider to collect metrics about
its performance [14]. TAPAS also proposes the SLAng language for precise
specification of SLAs [55] to reduce the level of ambiguity.

QoS management, monitoring and adaptation. This module represents
the middleware to convert conventional application services into QoS en-
abled ones. For example, this module contains all the necessary logic to
locally monitor the performance that the application service delivers to each
customer and the performance of the resource used for building the service.
Likewise, it contains algorithms for comparison, tuning, optimisation and
adaptation. The current version of TAPAS implements this module as an
adaptive clustering mechanism that incorporates QoS awareness into the
application service. The current environment consists of a set of Linux com-
puters running instances of the JBoss application server.

It is worth emphasising that the three modules discussed above are fairly
independent in the sense that a given application does not necessarily need to
implement the three modules together. For example, it is conceivable that, to
save costs, in an auction application a bidder prefers to exclude non-functional
SLAs from his contract. Similarly, it is quite possible that a provider in possession
of a large number of resources might opt for over provisioning rather than paying
for the cost of implementing and running the QoS monitoring and violation
detection module.

5 Conclusion

This paper surveys the state of the art in technologies for agreements, with
an emphasis on the implications for IT management software platforms. Agree-
ments form the basis for a variety of advanced forms of automated management,
enabling functionalities such as adapting systems to optimise business objec-
tives, resolving conflicts resulting from agreement violations, and gathering non-
repudiable evidence about agreement breaches. As we point out in the paper,
many pieces must come together to achieve such advanced functionality, requir-
ing technological advances in five categories: agreement specification, automated
provision of resources, monitoring, adaptation, and resolution of conflicts. We
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reviewed recent advances in all these areas, summarizing both state of the art
and open problems. We also discussed in more detail the technologies emerging
from industry (HP and IBM), and the software platform support being devel-
oped in standards bodies (WS-Agreement) and academia (TAPAS). The recent
flurry of attention for software support for agreements is encouraging. However,
as can be seen in the overview table (Table 1), many challenges remain to be
addressed on the road to comprehensive automated agreement-based system and
service management solutions.
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Abstract. Cancelling or reversing the effect of a former action is a necessity in 
most interactive systems. The simplest and most frequent form of this facility is 
the “undo” command that is available in usual, individual, text or graphic edi-
tors. As soon as collaborative work is considered, undoing is more intricate 
since the notion of a last action is not always meaningful. Within this frame-
work, the so-called “selective undo”, which allows selecting and cancelling any 
(or rather some…) former action, has received lot of attention. There are some 
similarities between cooperative work and composite web services: Component 
web services are concurrently accessed; they may be treated as shared docu-
ments for undoing former actions. Among the latest results on undoing in group 
editors, the transformational model seems suitable for generalization to other 
kinds of distributed systems. It completely avoids backward state recovery and 
allows the selection and cancellation of any former operation. We present some 
relevant aspects of this model, and then some hints on how to transpose it into 
the framework of composite web services. 

1   Introduction 

Dependable composition of web services, and web services architecture, are likely to 
play a major role in developing the next generation of distributed systems. Reusing 
solutions from distributed systems techniques seems a natural perspective. However, 
most solutions will not be reusable directly, mainly because of the openness of the 
Internet. For instance: every component web service is used and shared by a very 
large and a priori unknown class of users (persons or other web services); component 
web services may appear or disappear, etc. 

This paper brings in some contribution to the dependable composition of web ser-
vices, by studying how some aspects of dependability could be addressed in web 
services architecture. Dependability, in closed distributed systems, often relies on the 
concept of transaction, which solves both issues of concurrency control and failure 
occurrences [Gray 1993]. In an open environment the concept of transaction is no 
more suitable. Transactions may be long lasting, and locking a service for a long time 
is not acceptable. Another issue is backward recovery: Recovery or cancellation of 
operation is necessary for every involved component when a composed operation fails 
for some reason (site crash or user-initiated cancellation). Backward recovery is 
hardly acceptable in the presence of cooperation-based mechanisms over autonomous 
component systems such as web services.  
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One solution to this concern lies in forward recovery: It makes it possible to ad-
dress dependable service composition in a way that neither undermines the web ser-
vice's autonomy nor increases their individual access latency [Tartanoglu et al. 2003 
a]. It comes to cancelling, or reversing, or compensating the effect of a former action. 
In interactive systems,  the simplest and most frequent form of this facility is the 
“undo” command that is available in our usual, individual, text or graphic editors. It 
provides a way of performing the so-called “linear undo”:  Only the last action is 
undoable, and then the previous one, and so on; Moreover, there are cases where it is 
impossible to undo this last action.  The implementation of linear undo is based on 
some history buffer coupled with a “redo stack” (the history buffer behaving as a 
stack, as well). The “undoing” itself is realized either via state recovery or via the 
relevant reverse action.  

As soon as collaborative work is considered, as it is the case for distributed group 
editors, linear undo is no more suitable since the notion of a last action is not always 
meaningful. Within this framework, the so-called “selective undo”, which allows 
selecting and cancelling any (or rather some…) former action, has received a lot of 
attention [Karsenty and Beaudouin-Lafon 1993, Berlage 1994, Prakash and Knister 
1994, Dix et al. 1997, Sun et al. 1998, Ressel and Gunzenhäuser 1999, Sun 2000].  

 There are some similarities between cooperative work and composite web ser-
vices: Component web services are concurrently accessed and modified. They may be 
treated as shared documents when undoing former actions, as discussed above.  

Among the latest results on undoing in group editors, the transformational model 
presented in [Sun 2000] seems suitable for generalization to other kinds of distributed 
systems since it avoids completely backward state recovery and allows the selection 
and cancellation of any former operation in the history buffer, under the condition that 
there exists a reverse operation.  

We present some relevant aspects of this model, and then we give some hints on 
how to transpose it into the framework of composite web services. 

2   Doing and Undoing in Collaborative Work 

The transformational model considers three meta-commands, namely do(O), undo(O) 
and redo(O), where O is an instance of any operation of the collaborative environ-
ment. We briefly present the way do(O) is dealt with, since it is a necessary introduc-
tion to the way undo(O) is realised. The way redo(O) is performed is not addressed 
here because currently it does not seem to be of general interest for composite web 
services.  

There is a distinction between the site where an operation O is generated and im-
mediately executed, and the other sites where the do(O) command is received later on, 
very likely in a different context (i.e. a different history). 

The principle of the transformational model is that operations received from other 
sites are transformed, according to the local history, before being executed. 

The classical example for introducing operation transformation considers the same 
initial state “abc” for two users [Sun 2000]. User 1 generates O1 = insert[2,X]. His or 
her intention is to insert X between “a” and “bc”. Concurrently, user 2 generates O2 = 
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insert[3, Y]. His or her intention is to insert Y between “ab” and “c”. The execution of 
the command do(O2) when received by user 1 must transform O2 into O’2 = insert[4, 
Y], including in O2 the impact of O1, before executing it. 

The management of transformations and executions must ensure the three follow-
ing properties: convergence, causality preservation and intention preservation. 

Convergence. Convergence requires that when the same set of operations has been 
executed at all sites, all copies of the shared document are identical. 

Causal ordering preservation. It is a classical notion in distributed systems. Let 
operation Oa generated at site i, and operation Ob generated at site j, Oa → Ob  (read 
Ob is  causally dependent on Oa) if and only if: 

– i = j and Oa was generated before Ob 
– i  j and the execution of Oa at site j happened before the generation of Ob  

Causality preservation requires that for any dependent pair Oa → Ob , Oa is exe-
cuted before Ob  on all sites. An operation Ox is said to be causally ready at site k if it 
has been received and not yet executed at this site, and all the operations Oy such that 
Oy → Ox were already executed on this site.  

A related relation is that two operations Oa and Ob are said to be independent 
(noted Oa || Ob ) if and only if neither Oa → Ob nor Ob → Oa . 

Intention preservation. Intention preservation requires that the effect of the execu-
tion of do(O) in a remote site must achieve the same effect as executing O at its origi-
nal site, at the time of its generation; moreover, the execution effects of independent 
operations do not interfere. 

Convergence and causal ordering preservation are classical properties. They can be 
ensured by well-known techniques [Lamport 1978, Raynal and Singhal 1996] by 
associating some vector time stamp to every operation when generated. The innova-
tive and specific notion is intention preservation. It is the key to avoid long lasting 
blocking, and roll back or backward recovery. Intention preservation is realized by 
some transformations of the parameters of O in order to take into account the differ-
ence of context, which is due to the fact that different operations may have been done 
at the receiving site. A history buffer must be maintained on every site in order to 
keep the information necessary to the determination of the right transformations when 
doing a remote operation. 

2.1   Transformations 

Let us come back to the example above. Operations O1 and O2 are independent. The 
transformation of O2 = insert[3, Y] into O’2 = insert[4, Y] is achieved by the so-
called “inclusion transformation” IT: O’2 = IT(O2, O1). In this precise case: 

IT(insert[i1, c1], insert[i2, c2]) = insert[i1, c1] when i1 < i2 and insert[i1+1, c1] 
otherwise. 

Remark. Note that this approach has no pretension to solve conflicts. In the example, 
if i1 = i2 and c1  c2, there is a conflict that must be detected and solved in some 
way. Even if this method can help at detecting conflicts [Molli et al. 2003], solving 
them is out of its scope. 
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Conversely, in some cases it is necessary to exclude from the operation Ox to be 
done the impact of some other operation Oy via the “exclusion transformation” ET(Ox, 
Oy). It is the case when independent operations are generated from different document 
states, for instance: Operations O1 and O2 are generated independently, respectively 
by user 1 and user 2, and then, just after O2, before the propagation of O1, user 2 gen-
erates O3. When received by user 1, (after O2, because of causality preservation), the 
impact of O2 on the parameters of O3 must be excluded before including the effect of 
O1. 

It is worth noting that very often IT and ET come to identity, as it is the case in the 
example for couples of insert operations.  

IT and ET are supposed to be defined for every couple of operations of the collabo-
rative system. 

2.2   A Generic Schema for Controlling Operation Transformations  

The general schema for applying operation transformations is generic. It is independ-
ent from the application and the operations. In [Sun et al. 1998], the authors give a 
general algorithm that can be (rather drastically) summarized as follows:  

– When a causally ready operation has its original history being the same as the cur-
rent history of the receiving site, it can be executed as it is; 

– When a causally ready operation has its original history being different from the 
current history (due to preceding executions of independent operations), this opera-
tion needs to be transformed. 

To determine the transformation to be applied to a new operation, the algorithm 
only uses its vector time stamp and the local history. The state vectors time stamping 
of the operations make it possible to know whether two operations are independent.  
Moreover, there is in every site a so-called “minimum state vector table” (one state 
vector by site) that is used to know if an operation is causally ready, to compare its 
local history with the current history and to perform some kind of garbage collection 
in the history buffer. This last point avoids keeping the whole history by eliminating 
operations that cannot be involved in future transformations (see [Sun et al. 1998] for 
more details and discussion on compatibility with undoing). 

2.3   Undoing 

Undo is realised on the basis of the transformations above, under the assumption that 
for any operation O a reverse operation noted O is available. Let us consider the case 
where Undo(Oi) is generated or received at site k, with history buffer HBk = 
O1…OiOi+1…On. Undo(Oi)  will be performed by the execution of O’i obtained by 
transformation of Oi such that: O1…OiOi+1…On O’i has the same effect as  O1…Oi Oi 

O’i+1…O’n. Thus there is no rollback.  
The transformation of Oi into O’i includes the impacts of Oi+1…On, and, in the his-

tory buffer, the transformation of Oi+1…On into O’i+1…O’n excludes the impact of Oi.  
Oi is not kept in the history buffer, but the fact that Oi was done and undone is, for 

making possible some Redo(Oi). 
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More precisely, using two straightforward generalizations of IT and ET to lists L of 
operations whose impacts must be included (LIT(O,L)) or excluded (LET(O,L)) before 
doing operation O, the following treatments are performed at run-time: 

– O’i   is computed and executed, with O’i = LIT(Oi , HBk[i+1, n]) 
– The new history buffer is computed, namely: O1…Oi↓ O’i+1…O’n, with O’x = 

ET(Ox, Oi) for i+1  x  n. Oi is still present, but marked by some symbol (here↓) 
as a “do-undo pair”. This allows an efficient treatment of some possible subsequent 
Redo(Oi). 

Note that it is equivalent to doing Oi, with Ox → Oi for 1  x  i, and Oi || Ox  for i+1 
 x  n.    

This approach has been implemented for various applications where it is necessary 
to maintain the consistency of shared data: group editors, graphic ones [Sun and Chen 
2002] or textual ones [Sun et al. 2004], file synchronizer [Molli et al. 2003]. Here we 
suggest to use it for slightly different purpose, namely to develop adequate transac-
tional attitudes for web services. 

3   Undoing in Composite Web Services via Operational 
Transformations 

In composite Web services, doing and undoing operations of component services is 
easier because there is no distributed common document to maintain in a consistent 
state. However, the problem remains that some operations requested by other sources 
than the composite web service can be performed by the component service. These 
operations must be taken into account when undoing even the last operation previ-
ously requested to a component service. 

In the example of Figure 1, a composite Web service, CWS, sends operations Oc
1 

and then Oc
2 to the WS Web service. Between the executions of Oc

1 and Oc
2 by WS, 

WS performs operations Ow
1 and then Ow

2 requested by some other sources than CWS. 
Moreover, after Oc

2, it performs Ow
3. Then it receives some Undo command from 

CWS. 
Let us consider the case of Undo(Oc

2). The history buffer of WS is Oc
1 O

w
1 O

w
2 O

c
2 

Ow
3.  Following the transformational approach, if we assume that WS provide a re-

verse operation Oc
2 for Oc

2 and the IT and ET transformations, the undo command can 
be realised by 

– Execution of IT(Oc
2, O

w
3), including the impact of Ow

3 and 
– Transformation of the history buffer into Oc

1 O
w

1 O
w

2  O
c
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c
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Similarly, the command Undo(Oc
1) from CWS, with the same history buffer of WS, is 
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1, <Ow
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Fig. 1. Example of a scenario when undoing in composite web services 

In the general case, let HB = HBpre.O.HBpost the history buffer of a web service that 
receives the Undo(O) command, this command is realised by: 

– Execution of LIT(O, HBpost) 
– Transformation of HB into HB’= HBpre.O↓.LET(O, HBpost) 

It turns out that in the context of composite web services, the algorithm for applying 
operation transformations is much simpler than in the case of collaborative work. 
When some Undo command is received by a component web service, only the local 
state of this web service is concerned. Causal ordering is no more an issue since the 
only order to be considered is the local total order of execution of the component web 
service that is registered in the history buffer. 

However, the operations of web services are of a different nature than the opera-
tions of group editors. It turns out that IT and ET may require a bit more than modifi-
cations of parameters.  

3.1   Transformations in the Case of Web Services 

Let us consider an example from the classical travel agent case study [Mikalsen et al. 
2002, Tartanoglu et al. 2003a]. The travel agent service assists the user in booking 
complete trips according to his/her requests and is built by composing several existing 
web services (e.g., accommodation and flight booking, and car rental web services) 
located through a public web services registry. Each web service is an autonomous 
component, which is not aware of its participation into a composition process. 

We consider one of the airline reservation systems that the travel agent uses. 
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Let Oc
2 be a successful flight reservation, and Ow

3 another reservation for the same 
flight.  If Ow

3 has been successful, then IT(Oc
2, Ow

3)= Oc
2 and ET(Ow

3, Oc
2) is just 

Ow
3. If O

w
3 has not been successful, then IT(Oc

2, O
w

3) must remove the pending reser-
vation from the waiting list and satisfy it, in order to get a result similar as if Oc

2 was 
never executed.  In this case ET(Ow

3, Oc
2) consists in modifying the indication that 

Ow
3 was not satisfied. It turns out that the history buffer changes of type of content. It 

needs to keep more than a simple list of executed operations: for instance, indications 
on the success or failure of the reservation operations. 

The transformations are dependent on the application, but they also depend on an 
adequate definition of “has the same effect as” in the sentence: O1…OiOi+1…On O’i 
has the same effect as  O1…Oi Oi O’i+1…O’n (cf. Section 2.3). It would be unrealistic 
to require the system to be exactly in the same state as if Oi never happened. Thus the 
transformations must be designed in function of some weaker state equivalence: for 
instance that the same set of travellers has got reservations on the flight. 

However, in some cases this is not obtainable. In the example, if the waiting list of 
the flight was full, Ow

3 will not be satisfied, even if O2 is undone. Thus some ap-
proximation of state equivalence must be considered. 

Defining such a notion and the corresponding operation transformations is a major 
design activity: depending of the underlying application of the web service, the de-
signer must decide what approximation is acceptable and thus, what are the transfor-
mations required , and what kind of information must be kept in the history buffer. 

But the simplified version of the transformational approach that we propose here 
provides a framework and some guidelines for this activity. Even more, it gives some 
possibilities of formal verification [Imine et al. 2003].  

IT and ET must satisfy some reversibility properties. In [Sun 200] they are summa-
rised as:  

O’a = IT(Oa, Ob)   Oa = ET(O’a,Ob) 

It simply means that including the effect of Ob in the parameters of Oa, and then 
excluding this effect yields Oa again. 

In our case, it is possible to weaken this property by taking into account that it is 
only required in equivalent states. Let us note ≡s the relation between states discussed 
above. Let HBa (resp. HBb) the history buffer when Opa (resp. Opb) was generated, 
and [HBa] and [HBb] the corresponding states. Then IT and ET must satisfy the fol-
lowing properties: 

[HBa ] ≡s [HBb]   [HBa . Oa] ≡s [HBa . ET(IT(Oa, Ob), Ob)]  

[HBb ] ≡s [HBa .Oa]  [HBa .Oa ] ≡s [HBa .IT(ET(Oa, Ob), Ob)] 

In [Imine et al. 2003] the authors report how they used the SPIKE theorem prover 
to check these properties on various existing sets of transformation functions, discov-
ering several incorrections or over-specifications. They are currently modifying the 
SPIKE theorem prover in order to build an integrated development environment for 
transformation functions. Such an environment would provide a highly valuable assis-
tance for the design of web services with Undo possibilities.  
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3.2   Transactional Attitudes of Component Web Services 

This model provides an elegant solution for undoing in distributed systems without 
backward recovery. It is applicable under the following conditions:  

– For any operation, there is a reverse one  
– Every site manages a history buffer  
– For every site there are definitions of IT and ET for all couples of basic operations. 

The local algorithm for computing and managing the operation transformations and 
the history buffer is much simpler than in the case of group editors: there is no prob-
lem of causal ordering preservation, since only the local order of execution matters; 
there is no problem of convergence of different versions of the state of the web ser-
vices since the only state to be modified is the local one.   

This approach is practicable if the vocabulary of operations of each web service is 
not too large, otherwise the work required for the definition of IT and ET becomes too 
important. Besides, there is a significant constraint of efficiency: the web service must 
be locked during the computation of the transformations of the reverse operation and 
of the history buffer. Thus these computations must not take too much time. Actually, 
very often no transformations are needed as it has been observed for group editors 
[Sun and Chen 2002], [Sun et al. 2004].  

For a given web service, the statement of the set of transformations and of the con-
trol algorithm corresponds to the definition of a so-called “transactional attitude”. 
Such transactional attitudes are presented as some essential ingredients for the com-
position of autonomous web services by several authors, for instance [Mikalsen et al. 
2002, Pires et al. 2002]. 

Such a transactional attitude leads to some relaxed notions of transactions based on 
the “run and then compensate if needed” strategy, where backward recovery is never 
required.  It is compatible with the coordinated forward recovery solution presented in 
[Tartanoglu et al. 2003 b] for designing dependable composite web services. 

It is an interesting alternative to other possible transactional attitudes, such as “pre-
commit and wait for a commit or an abort”. Both kinds of attitudes could coexist in a 
composite web service, depending on the context (how frequent are compensations?) 
and the application behind the component web services (what is easier: to pre-commit 
or to undo?). 

A point in favour of this model is that, as soon as the underlying application of a 
web service provides reverse operations, it is possible to implement it as a wrapper of 
the web service [Fabre et al. 2003]. The role of the wrapper is to receive the requested 
operations, to transform them when needed, and to manage the history buffer. An 
example of the adaptation of a single-user editor (namely MS Word) to the opera-
tional transformation technique is reported in [Xia et al. 2004].    

4   Conclusion and Perspectives 

In this article, we show how to transpose techniques developed for collaborative  
work and group editors to composite web services. The so-called Operational Trans-
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formation approach provides an elegant general model for undoing operations in 
multi-user applications avoiding backward recovery.   

This approach can be simplified and adapted into an “optimistic” transactional atti-
tude: we call it optimistic because it is based on a “run and then compensate if 
needed” strategy. It is an interesting alternative to other more classical transactional 
attitudes, such as “pre-commit and wait for commit or abort”.  As soon as the underly-
ing application of the web site provides reverse operations, this transactional attitude 
can be implemented without modifying it, as a front-end or a wrapper. 

It is possible to formalise this approach and to formally verify the correction of the 
transformations, thus of the compensation strategy.  

This model and the corresponding transactional attitude seem worth to explore. 
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Abstract. In this paper, we address the problem of improving the availability 
and correctness of Web Services. An architectural approach is proposed that 
incorporates fault-tolerant techniques, such as, self-checking, comparison, and 
dynamic reconfiguration. The first two techniques are associated with the 
detection and handling of faults at the component level, while the latter is 
associated with the system. To demonstrate its applicability, a distributed 
application was designed and implemented that addresses the problem of 
obtaining dependable stock quotes from the Web. The system was implemented 
using Web Services core technologies, and preliminary measurements 
confirmed the improved availability of the whole application. 

1   Introduction 

This paper deals with the dependability of systems that are built from existing 
systems. In these systems, characterised as open distributed systems, such as the 
Internet, the sources of information are not necessarily under the controlling domain 
of the developer, and thus cannot be trusted. In this paper, we present an approach 
that incorporates fault tolerant techniques at the architectural level of the system, 
rather than at the lower levels of abstraction. Most of the architectural solutions 
proposed for improving the dependability of systems have relied on means for 
avoiding the introduction of faults, instead of their acceptance. The architectural focus 
for incorporating fault tolerant techniques is justified since it is the architecture that 
provides the ability of a system to respond to faults. If a system is not well structured, 
it tends to become more complex, thus defeating the initial efforts of improving its 
dependability. Moreover, the architecture of a system tends to abstract away from the 
system details, but assist the understanding broader system-level concerns  [27], and 
this is fundamental when building systems out of existing systems.  

The proposed architectural approach for improving the dependability of systems, 
defined in the paper, is a pattern consisting of architectural elements for the 
elimination of mismatches that might exist between the required and provided 
services, and the provision and management of redundancies. The identified 
architectural pattern could be instantiated into a wide range of applications, mainly 
those that rely on data. For this type of systems, it is assumed that the sources of data, 
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i.e. those system components that are outside the controlling domain of the 
developers, can fail arbitrarily, while the components of the pattern will tolerate these 
failures by imposing crash-failure semantics when inconsistencies are detected in the 
data, and by reconfiguring the system when handling component failures. In order to 
show the effectiveness of the architectural approach being proposed, a distributed 
application was built that addresses the problem of providing uninterrupted stock 
quotes that are obtained from several unreliable sources from the Web. This case 
study is illustrative of the kind of system that the proposed architectural pattern is 
ideal for, which are those systems that contain an abundance of ready available 
redundancies – this is the case of the Internet. To show the feasibility of the proposed 
architectural pattern in the context of an Internet application, the whole stock quotes 
system was implemented using Web Services technologies  [21]. In a previous work, 
the implementation of the architectural solution being proposed was done in Jini  [22], 
a set of API’s and network protocols that help to build and deploy distributed systems 
that are organized as federations of services  [13]. 

The essential motivation for this work is to show that, depending on the type of 
system, application independent fault tolerant techniques can be easily incorporated 
in the architectural modelling of systems, like the notion of multi-versioning 
connectors (MVC)  [25], which was proposed for the evolution of software systems, 
but derived from concepts associated with N-version programming (NVP)  [1]. On 
the other hand, application dependent techniques, such as exceptional handling, 
might be more costly to incorporate because more care must be taken at every stage 
of software development  [27]. The rest of the paper is structured as follows. In the 
next section, we discuss the architectural pattern being proposed for improving 
availability and correctness of Web Services. In section 3, a system that collects 
stock quotes from different Web Services providers is presented as an illustrative 
case study. In section 4, we present some evaluation results that were obtained from 
the implementation of the case study. Section 5 provides a background on crash-
failures, giving special emphasis to fail-stop processor and crash-only components. 
Finally, section 6 presents the concluding remarks and provides directions for future 
work. 

2   Structuring Systems  

The structure of a system is what enables it to generate the system’s behaviour, 
from the behaviour of its components  [12]. The architecture of a software system is 
an abstraction of the actual structure of that system. The identification of the system 
structure early in the development process allows abstracting away from details of 
the system, thus assisting the understanding of broader system concerns  [27]. From 
the perspective of fault-tolerance, system structuring should ensure that the extra 
software involved in detecting and recovering errors provides effective means for 
error confinement  [1], does not add to the complexity of the system, and improves 
the overall system dependability  [26].  
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2.1   Architectural Representation 

The architectural representation of a system exposes its organization in terms of a 
collection of interacting components. For representing the architecture of systems, the 
following three basic concepts will be adopted  [11] [19]: 

• Components represent the computational elements and data stores of a system.  
• Connectors represent the interactions among components. They have interfaces 

that define the roles played by the participant components in the interactions. 
• Configurations characterize the topology of the system in terms of the 

interconnection of components via connectors. 

Components have multiple interfaces, called ports, each one defining a point of 
interaction with its environment. Interfaces are sets of operations and events that 
define the services provided or required by the component. The former are related to 
the services that the component offers, while the latter describes the services used by 
the component. 

Patterns, in general, allow codifying solutions of specific problems as interactions 
between components  [20]. The notion of an architectural pattern adopted in this paper 
is that of a architectural configuration that fulfils a particular purpose, and which can 
be instantiated into several applications. 

2.2   Architectural Pattern 

The architectural pattern being proposed aims to improve the availability and 
correctness of systems that provide a service based on information sources that reside 
outside the developers control domain. In particular, we are looking into services that 
essentially consist of data. The pattern relies on two principles: components that 
implement crash-failure semantics, and systems that support dynamic reconfiguration. 
Crash-failure semantics relies on the halt-on-failure property, in which processing of a 
component halts before produces an incorrect outcome  [30]. Dynamic reconfiguration 
is a fault tolerant technique to avoid the re-activation of a faulty component by 
switching the processing to a redundant component  [2]. The types of faults that the 
proposed architectural pattern aims to tolerate are faults in the value and time domains 
that might occur in the information sources or communication channels.  

In order to increase the correctness of the service data, multiple information 
sources are used. The data provided by the sources, before it reaches the end service 
interface, is checked in both time and value for correctness. The component 
performing the checks implements crash-failure semantics by comparing the data 
from two or more information sources, and in case of discrepancy, the component 
crashes itself. The number of sources used to perform comparison depends on the 
number of faults the system can tolerate. Crash-failure components are also replicated 
in the system for increasing the availability of the end service, since the architectural 
pattern incorporates the ability to dynamically reconfigure itself when reacting to 
failures. When a crash-failure component fails, the system reconfigures to another 
available component in order to mask the failure. This responsibility is assigned to the 
component providing the end service. This architectural pattern resembles the N Self-
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Checking Programming (NSCP) technique for software fault tolerance  [16], however 
it does not employs two levels of comparison since we are not dealing with design 
flaws. 
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Fig. 1. Overall architectural pattern 

The architectural pattern is presented in figure 1, in terms of an UML diagram 
representing its basic components, their required and provided interfaces, and the 
connections between these interfaces. In the following, we present very briefly each 
of the basic components, in the next section each of these components will be 
presented in more detail. The use of diverse sources of information introduces 
packaging mismatches, and one way for resolving these mismatches is by using the 
on-line bridge technique  [8]. This technique was referential in the design of the 
Bridge component for eliminating potential mismatches that might exist between 
information sources and the Comparator. The component Comparator implements 
the crash-failure semantics by comparing two sources of information, assuming a 
single fault should be tolerated. In case there is a discrepancy between two sources, 
the Comparator crashes itself, and forces the Bridges also to crash. The provision 
for the continuous delivery of the specified services to the client is based on 
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architectural reconfiguration, which relies on a fault tolerant FT_Registry for finding 
alternative Comparators and Bridges. In this case, the client of the services 
enquiries the FT_Registry for alternative Comparators, while the Comparator 
enquiries the FT_Registry for alternative Bridges. In order to select the most 
appropriate service provider, the concept of a service Broker is introduced, which is 
responsible for collecting information concerning the quality of the services been 
provided by the different Comparators and Bridges which are the basic building 
blocks of this architectural pattern. This information might be related to issues like, 
response time, availability and correctness of the different services.  

In order to analyse the applicability of the proposed architectural pattern, we 
discuss in the following its instantiation into a Web Services application. 

3   Architectural Components: Design and Implementation 

Several technologies have been recently introduced for developing Web Services. The 
requirements for those technologies are the ability to provide seamless business 
integration, which is obtained by a layer of abstraction above existing software 
systems, operating system, and any hardware or programming platform  [21] [19]. 

XML (Extensible Markup Language) is a well-formed textual document, which 
is basically the foundation of the Web Services. It provides a standard language for 
defining data and how to process it. Since XML is plain text data, programs on 
various platforms should be able to process it. Three primary technologies have 
been accepted for developing Web Services, which are all based on XML. The 
technologies are  [6] [21]: SOAP (Simple Object Access Protocol), which provides a 
standard packaging structure for transporting XML documents over a number of 
different standard Internet technologies, such as HTTP and SMTP; WSDL (Web 
Services Description Language), which is using XML to describe the interface of a 
Web Service in a standardised way; and UDDI (Universal Description, Discovery 
and Integration), which provides a worldwide registry of Web Services for 
advertisement, discovery, and integration purpose. One of the promises of Web 
Services is to enable dynamic business integration through a standard infrastructure. 
For example, a business that might require a service would inquiry a UDDI to find 
an appropriate provider of that service. Once the service is identified, the business 
downloads and processes the provider’s WSDL, so that the business can 
automatically generate a client that is able to interface with the discovered service.  

3.1   Case Study 

The suitability of the architectural pattern being proposed is demonstrated in the 
context of a distributed application that deals with the continuous provision of 
correct stock quotes. For that, our system employs several providers of stock quotes 
for guaranteeing the delivery of an uninterrupted and correct service1. 

                                                           
1 We abstract from the fact that there might exist a single point of failure from the system that is 

responsible for disseminating stock prices  [15].  
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The service interface allows a client to specify the stock quote that he/she is 
interested, and the interval that he/she wishes to receive updates on its price. The 
system backend implements the proposed architectural pattern, utilising four Bridge 
components, which are connected to four different online sources. Those Bridges 
collect the required data from the online sources, and translate them to an object 
representation that contains the price of a stock at a given time along with that time. 
The Comparator component performs the comparison on the data produced by the 
Bridges, in terms of the value of the stock price and its respective timestamp. In this 
case, the comparison in the value domain is only meaningful if the stock quotes have 
the same timestamp. In case of discrepancies in the value or time domains, the 
Comparator and its respective Bridges are crashed, and alternative ones are sought 
through the FT_Registry for the continuous provision of services. In the context of 
this application, the crash-failure semantics is appropriate because after a crash, the 
loss of its internal state should not have major impact since its state can be easily 
recovered on future readings. Outside this architectural pattern, it is assumed there 
exists a component, which is responsible for detecting a Comparator failure, starting 
system reconfiguration, and providing the final service to the client.  

For this case study, all the components of the architectural were implemented 
using Web Services technologies: SOAP messages are exchanged between 
components, WSDL interfaces define the services associated with a particular 
component, and for the registry, the UDDI standard was employed. In the following, 
we describe each of the components in more detail.  

3.2   Design and Implementation 

In this section, we present a design of the main components of the architectural 
pattern, in terms of their structure and internal behaviours. When necessary, their 
implementation in the context of the Web Services architecture will be also discussed. 

3.2.1   Bridge 
The Bridge component, shown in more detail in figure 2, is responsible for collecting 
information from a single Web source, in HTML format, and translating it to a 
compatible format, a SOAP message. It does so by providing, respectively, an 
interface with the Web source for the collection of information (iWeb), an interface 
with the rest of the architectural pattern (iBridge), and the means for resolving any 
mismatch between these interfaces. The packaging mismatch that the Bridge might 
be required to resolve is that of data representation, transport protocol, data transfer, 
and control transfer.  

 The online Web server provides the data, and for standardising its collection by 
the Bridge, a required interface is introduced (iWeb) together with a component 
(Collector) responsible for the collection of the data. This component provides 
methods for collecting data, and setting the type of data to be collected. By 
introducing this interface, we attempt to make the Bridge as flexible as possible 
without binding it to a particular collection method. After performing the first step in 
resolving any packaging mismatch, the Bridge has to extract the required data. In 
order to do that, the Bridge needs to parse the information it receives (Parser). 
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Unfortunately, the diversity of data representation among the online sources makes it 
difficult to design a generic parser with a well-defined grammar (this will cease to 
exist once all the information is encoded in XML, for example). Instead, we introduce 
an interface (iParser) that can be implemented by classes wishing to provide parsing 
functionality.  

iWeb

:Collector

:Parser:DataServeriBridge

iParser

iWSDL

iUDDIiCrash

:UDDI:Crash:QoS

:WSDL

iCollector

iMonitor

Bridge

iQoS  

Fig. 2. Design of the Bridge component 

The Bridge is also responsible for providing a service interface (iBridge) that 
performs data and control transfer in a way compatible with the rest of the 
architectural pattern. The Bridge receives HTTP requests from the Comparator, and 
forwards these requests to the online Web server. Then it should accept the HTTP 
responses from the Web server, and return them to the Comparator. In case the 
transfer protocol used by the Web server is HTTP, which is the same employed by the 
rest of the architectural pattern, the only packaging mismatch to be solved is that of 
data representation. The bridge component is responsible for translating the data 
representation from HTML document to SOAP message. The basic functionality of 
the Bridge is described in the sequence diagram of figure 3. 

:DataServer :Collector :Parser

:DataObject :WebServer
collect(DataName)

requestData()

SourceDocument

SourceDocument

parse(SourceDocument)
createObject()

DataObject

 

Fig. 3. Sequence diagram of the Bridge 
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There are two other interfaces that are associated with the Bridge component. A 
required interface (iCrash) that the Comparator uses for crashing the Bridge in case 
there is a discrepancy in the data provided by two different Bridges, and this is 
executed by the component Crash. A provided interface (iQoS) responsible for 
monitoring the performance of the Bridge for the purpose of obtaining its operational 
profile that will be fed into the services Broker, and implemented by the by the QoS 
component.  

In addition of solving the packaging mismatch problem, the Bridge is also required 
to provide a WSDL interface to describe the services it provides (iWSDL). The 
WSDL interface includes a description of the interaction pattern, required parameter, 
provided response and transport protocol. In order to allow the interested parties to 
search for the Web service provided by a particular Bridge, the Bridge needs to 
refresh at regular time intervals its entry on a UDDI server, otherwise the UDDI 
server will consider that the Bridge has failed, and stops publishing its services. This 
refreshing time interval is associated with the leasing time mechanism of the UDDI, 
which is a mechanism that rids the UDDI of services that cease to be available (this 
leasing time mechanism was addition to the UDDI standard, and it will be discussed 
in more detail later on). From the perspective of the Comparator, no assumption is 
made how the Bridge component might fail. 

3.2.2   Comparator 
The role of the Comparator is to decide on the integrity of the data that is provided 
by the Bridges. The sources of data can come from two or more distinct Bridges, 
depending on the number of failures that has to handle. The Comparator assumes 
arbitrary failures for the Bridges, and to detect these failures the Comparator is a 
self-checking component that monitors both the behaviour of the connected Bridges, 
and its internal behaviour. In order to achieve this, the Comparator relies on two 
techniques: timeout based inter-component communication and comparison of data. 
The Comparator together with the associated Bridges forms a component that 
enforces crash-failure semantics. The design of a Comparator is shown in figure 4.  

:Comparison

:Server
iComparator

iWSDL

iUDDI

:Crash:WSDL

Comparator

iBridge
:RemoteBridges

:SelectBridges

iCrash

iData

iCrash

iLocate iCompare

 

Fig. 4. Design of the Comparator component 
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In this paper, we consider a configuration in which there are two online Bridges per 
Comparator. The comparison of data from the Bridges is performed both in the value 
and time domains. For the comparison of the value of two data items to be meaningful, 
their timestamps must be equal. In case that either the timestamps or the values are 
different, the Comparator causes the two connected Bridges to crash (iCrash), and 
then crashes itself. 

In addition to the required (iBridge) and provided (iComparator) interfaces, which 
are related to the Comparator functionality, the specification of the Comparator also 
includes a WSDL interface (iWSDL), which exposes the operations that the 
Comparator provides, and a UDDI interface (iUDDI) for publishing the services it 
provides, and for discovery services that it requires, i.e., services provided by Bridges. 

:Server :SelectBridges :RemoteBridges :Comparison

getBridges() requestBridge()

twoBridges

getData()

compare()

requestBridge()

Data

:Crash

crash()

requestData()

requestData()

crashBridge()

crashBridge()

getData()

compare()

requestData()

requestData()

 

Fig. 5. Sequence diagram of the Comparator 

When a Comparator is instantiated, the first step is to obtain two Bridge 
components from the UDDI registry from which can obtain stock quotes. The request 
for the stock quotes is made in the form of a SOAP message. The Quote objects, which 
are returned from the Bridges, are also in the form of SOAP XML documents. The two 
Quote objects received from the two Bridges are compared in terms of their timestamp 
and value. The timestamps of the two Quote objects must be equal in order for the 
comparison of the stock prices to be meaningful. In the event that the two timestamps 
are not equal, the Comparator causes the two online Bridges to crash, and then crashes 
itself. The same crash procedure will also be followed in the eventuality there is a 
discrepancy in the two stock prices. The comparison between two Quote objects is 
implemented by the Comparison interface. The Comparator component is also 
crashed if there are any communication faults occurring between itself and the Bridges. 
The communication protocol in Web Services is HTTP, which has got a default timeout 
facility that is used by the Comparator to detect response failures in any of the two 
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bridges. If such failures are detected, the Comparator crashes both Bridges and then 
crashes itself. The basic functionality of the Comparator is described in the sequence 
diagram of figure 5. 

3.2.3   Fault Tolerant Registry 
In Web Services, the UDDI (Universal Description, Discovery and Integration) 
registry supports advertisement, discovery, and integration of services: a component 
can register and publish its services, and discover other registered services to build 
new services. The role of the registry in the context of the proposed architectural 
pattern is to support architectural reconfiguration when a Comparator crash-fails. 
When this happens, the client interface, external to the pattern, inquiries the UDDI 
about alternative services, and once another Comparator is instantiated and 
activated, the Comparator can inquiry the UDDI registry for other services that it 
will require, that is, the Bridges. In order to avoid being repetitive with material 
already available in the literature about UDDI  [3] [21], in the following, we describe 
only those additions that have been made to the standard UDDI that enables the 
provision of fault tolerance.  

In order to enforce that the information of the UDDI is always updated concerning 
the availability of services, a leasing time was added to the UDDI standard. 
Otherwise, it would be difficult to identify which resources are available since the 
UDDI standard does not present a mechanism for eliminating from its records 
services that cease to exist. The leasing time technique, borrowed from Jini  [13], 
requires every registered service to refresh periodically its records, otherwise the 
service will be considered unavailable. During the refresh process, each registered 
service is required to supply its uuid_key, which enables the registry to determine 
whether it is a new service. If the key is omitted, the service is assumed to be a new 
service, and a new record is created in the registry’s data store. Records of expired 
services will not be removed from the registry, so that they can still use the old key 
when resuming service following a failure. This approach maintains a certain 
compatibility with the UDDI standard, though it is different from Jini, which 
completely removes the expired records. 

For the provision of fault tolerance, UDDI registry was replicated using the semi-
passive replication technique  [7] [24]. In this technique only one replica 
(master/primary) handles requests, provides replies, and sends messages to update the 
internal states of the other replicas (slaves/backups). For an efficient recovery, in case 
the master replica crashes, this technique ranks all slaves in order, so that the top 
ranked slave will automatically take over the master’s job. In order to implement the 
semi-passive technique for the fault tolerant UDDI registry, a client stub was 
introduced for switching from a failed master to the top ranked slave. This ensures a 
dynamic system recovery when the master UDDI registry fails.  

The design of a fault tolerant UDDI Registry is shown in figure 6. The main types 
of components of this design are: Processor, which communicates with clients or 
client stub in XML; Function, which is used to process the requests and provide 
replies; DataStore, which is responsible for storing all the information related to the 
UDDI Registry.  
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Fig. 6. Design of the Registry component 

The internal services of the fault tolerant Registry are transparent to the client, and 
this is enforced by the client stub, implemented by the ReplicaUDDIProxy. The 
ReplicaUDDIProxy is also responsible for dynamically recovering the system. This 
component extends the UDDIProxy class from IBM’s UDDI4J package  [32]. It still 
provides all ordinary tasks (such as, retrieving registered services) for interaction 
between the registries and clients, but additionally introduces the support for fault 
treatment. Except for the master, all slaves will be given a unique ID by the master, 
which will ensure that all slaves are ranked in order. During the initialisation of the 
ReplicaUDDIProxy, this ordered list of slaves is downloaded from the master. If the 
master crashes, all ReplicaUDDIProxys, one for each client, know which is the next 
candidate to become master. Each ReplicaUDDIProxy will notify this slave to 
upgrade to master. The new master upgrades its state and notifies all other slaves.  

In the semi-passive mechanism employed to replicate the UDDI Registry, the master 
ensures that all the other replicas’ internal states are consistent. For instance, a registered 
service must be referred to using an identical uuid_key in each of the replicas, which 
is the responsibility of the master Registry for issuing and maintaining the keys. Any 
requests that modify the master’s internal state should be forwarded to all registered 
slaves. However, a problem may arise if the master Registry crashes after replying to a 
publishing request and the component involved is a newly joined component. From this 
point the component will start to use the issued uuid_key from the reply to refresh its 
service, and then the ReplicaUDDIProxy will upgrade one slave to become master 
since the master has crashed. However, the master has not notified the slaves about this 
new record. Finally, the new master will reject this refresh request. To solve this 
problem, the master will firstly notify all slaves about any successful modifications. 
Once the master has received acknowledgements from slaves, it will then return the 
result to the clients. If the master crashes during this process, then it will not return 
anything to the client. Hence, the ReplicaUDDIProxy will resend the message to the 
new master and receive a reply including a uuid_key from it. The sequence diagram 
of figure 7 shows the process of replication backup. If any slave crashes during the 
duplication, the master removes it from the slave list and notifies all other slaves to 
make this change.  
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Fig. 7. Sequence diagram of the Registry replica management 

On the master Registry’s side, if a ReplicaUDDIProxy is making an enquiry for 
the registered slaves, the master retrieves registered slaves from its DataStore. The 
data of a replica Registry consists of the five elements of Replica_UDDI_ID, 
Name, Inquiry_URL, Publish_URL and Description. The 
Replica_UDDI_ID field is the primary key of the table that ensures the 
uniqueness of records. The Inquiry_URL and Publish_URL must also be 
unique as well. The slave list returned to the ReplicaUDDIProxy will always be in 
ascending Replica_UDDI_ID order, so that the ReplicaUDDIProxy knows 
which slave is the next candidate to replace the failed master. Figure 8 shows the 
process of retrieving registered slave replicas. 
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Fig. 8. Sequence diagram of the Registry when requesting replica slaves 

During execution, new Registry replicas may join. A new replica should 
automatically send a join request including its access points (inquiry and publish 
URLs) to the master Registry. The master will then respond to this new replica with 
all records (including expired records) it holds before inserting this replica into its 
data store. The new replica will insert all records into its data store and send an 
acknowledgement message back. After receiving the acknowledgement message, the 
master knows the new replica is alive and their internal states are consistent, which 
allows the master to insert this replica in the list of registered slaves. Finally, this join  
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Fig. 9. Sequence diagram of the Registry when replicas join 

message will also be forwarded to all registered slaves. Figure 9 illustrates sequence 
diagram of this process. 

As soon as the ReplicaUDDIProxys notices the failure of the master Registry, 
they will notify the first available slave to be the master. This involves sending a 
message that contains information about the replica to the chosen replica. The 
message receiver will check if the inquiry and publish URLs received in the message 
are identical to its own, and it will upgrade itself to master only if this condition is 
satisfied. If it has been upgraded to master, it will forward this message to other 
slaves. The other slaves will update their internal states to reflect the change. When 
the former master recovers from failure, it sends a join message to the new master and 
resumes service as a slave.  

3.2.4   Services Broker  
The role of the ServiceBroker is to evaluate and compare the quality of alternative 
Web Services, when choosing a service. The motivation for introducing this 
component is to provide the means for a system to select a particular service provider 
based on the quality of its services. The current specification of the UDDI does not 
support this facility when multiple alternative services are available. When the client 
is presented with several options of services, the selection of a particular Web Service 
usually does not rely on concrete criteria. The existence of a ServiceBroker allows 
clients to make informative choices in the selection of Web Services based on 
operating profiles associated with quality of their services. In the proposed 
architectural pattern the ServiceBroker is an intermediary component between a 
client and the Web Services, and its purpose is to collect information and 
measurements from the different Web Services. In the context of the stock quote 
application, if some of the parameters being measured are response time, availability 
of the Web server, and the correctness of the stock prices being provided, then a more 
dependable system configuration can be obtained by selecting the most appropriate 
servers. The design of the ServiceBroker is shown in figure 10. 



82 R. de Lemos 

:Evaluator
:Server

iBroker

iWSDL

iUDDI

:DataBase:WSDL

ServiceBroker

iBridge
:Collector

:LocateServices

iStoreiEvaluate
iLocate

iCollector

 

Fig. 10. Design of the SeviceBroker component 
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Fig. 11. Sequence diagram of the ServiceBroker 

When a client requires a particular service, it contacts the ServiceBroker, which 
then contacts the registry (UDDI) to obtain a list of Web servers currently providing 
that particular service. After obtaining this information, the ServiceBroker is 
responsible for collecting measurements about the quality of services of the 
different Web servers, and this can be performed in two distinct ways. First, the 
ServiceBroker obtains these measurements either from a Web server or through a 
third party that would be responsible for monitoring the services of a Web server (in 
our case, that monitoring could be performed by the Bridges). Second, the 
ServiceBroker performs itself the measurements after receiving a client’s request. 
In either case, the measurements collected are stored in a DataBase from which an 
evaluation can be made. When the ServiceBroker relies on a component like the 
Bridge to collect the measurements, guarantees have to be in place that those 
measurements are stored in a stable storage  [29] for avoiding them to be lost in the 
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eventuality of a crash. After collecting the measurements related to the operating 
profile of the different Web servers, the ServiceBroker selects a particular Web 
service for the delivery of the requested service according to the criteria identified 
by the client. The basic functionality of the ServiceBroker is described in the 
sequence diagram of figure 11. 

4   Evaluation 

The evaluation of the architectural pattern has been performed on a Dell Laptop PC 
Pentium III with 640Kbytes of memory on Win XP platform. The network 
connection was a dial-up modem connection with 56K bandwidth, and all 
measurements were performed during the opening hours of the U.S. stock market. 
The whole architectural pattern was evaluated, except for the ServiceBroker, 
according to the following measures  [9] [10] [18]:  

1. Response time: this measure is defined by the time elapsed from the request 
submission to the arrival of the first byte of the sequence. 

2. Availability: this measure is defined as the ratio between the amount of time the 
system is available and the total duration of the run (or the experiment). 

3. Accuracy: this measure is defined as the error rate in the service provided by the 
system, essentially, is a measure for correctness. This measure is computed as 
follows: Accuracy = 100 - (Number of requests with errors / Number of total 
requests) x 100. 

Although the service can be available, errors may exist in the information being 
provided, hence the difference between availability and accuracy. Availability 
measures the quality of services from the perspective of the server. In other words, 
the only concern is whether the service is delivered (there is no need to evaluate 
whether the service being provided is correct or not - the major concern is with 
failures that can affect the server or the communications between the server and the 
client). Accuracy is a measure of the quality of services from the client perspective. 
The concern is to evaluate whether the service being provided is correct. The 
accuracy measure is stricter than the availability one. 

4.1   Evaluation of the Bridges 

The response time of each of the Bridges was measured as the time spam between 
the arrival of a request for a stock quote at the Bridge, and the time the Bridge 
provides the required information. The results of these measurements are shown at 
Table 1. 

The availability measure of the four Bridges was based on whether the specified 
service, in terms of stock quote values, was delivered or not: if the bridge did not 
produce this service then it was regarded as unavailable. The results of these 
measurements are shown at Table 2. 
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Table 1. Response times for the Bridges 

 MSN Lycos PCQuote Yahoo 

Response Times (ms) 6235±52.51 8264±40.12 5504±36.40 1799±47.38 

Table 2.  Availability for the Bridges 

 MSN Lycos PCQuote Yahoo 

Availability (%) 97.60 97.93 99.77 99.98 

For measuring the accuracy of the Bridges, these were placed in groups of three 
together with a voting algorithm. A Bridge was recorded as accurate when the 
timestamp and the value of a stock quote agreed with at least one other Bridge. If 
there was any discrepancy with the other two Bridges, the Bridge being evaluated 
was recorded as inaccurate. When stock quotes were not delivered due to omission, 
accuracy was not measured. The results of the accuracy measurements are shown at 
Table 3. 

Table 3. Accuracy for the Bridges 

 MSN Lycos PCQuote Yahoo 

Accuracy (%) 74.40 75.69 94.29 93.00 

4.2   Evaluation of the Comparator 

A preliminary evaluation of the Comparator was performed without considering the 
reconfiguration of the architecture. Under these conditions, the response time of the 
Comparator is almost the same as that of the Bridges.  

For measuring the availability and accuracy of the Comparator a fixed time 
interval between requests was assumed, and these measures were performed at the 
interface of the Comparator. The measurements were performed during a period of 
three hours, and a total 390 requests were made. 

The results for the availability measurements are shown in Table 4. This lower 
value compared with the value obtained by the individual Bridges was expected since 
a stock quote would not be delivered if either the timestamps or values produced by 
two Bridges were different.  

Table 4. Availability of the Comparator 

Number of failures 35 

Availability (%) 91.02 
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For measuring the accuracy of a Comparator, a second Comparator was used. If 
there was a discrepancy between either the timestamps or the stock quote values of 
the two Comparators, the Comparator being evaluated was deemed to have failed. 
The results for accuracy measurement are shown in Table 5. This higher value 
compared with the value obtained by the individual Bridges was expected since the 
Comparator is able to eliminate stock quotes that might be erroneous. However, if 
higher levels of accuracy are sought then the failure assumptions have to be revised.  

Table 5. Accuracy of the Comparator 

 Comparator 

 
Timestamp 

Failures 
Value 

Failures  

Number of failures 1 7 

Accuracy (%) 97.94 

4.3   Evaluation of the Reconfiguration 

For evaluating the reconfiguration of the architectural solution a different 
experimental setup was establish in which different types of faults were injected at the 
Bridges: incorrect timestamps and stock quote values, and the crash of Bridges. The 
objective was to analyse the impact that architectural reconfiguration would have on 
the response time and the accuracy of the system. Once a Comparator has crashed, 
the system reconfiguration would involve the search for new Comparator, and two 
new Bridges.  

The responsive time is significantly affected since an architectural reconfiguration 
based on the UDDI registry requires that an alternative Comparator, and its two 
Bridges, have to be found, deployed and initialised. The response time was measured 
as the elapsed time between the submission of a request and the arrival of the first 
byte after the reconfiguration. The worst response time associated with the 
reconfiguration of the system was associated with the fact that new Comparator and 
Bridge components were not available when required because they might had not yet 
recovered from a previous crash. The load on the system may have contributed to 
delay in restarting each of the components. The data obtained for the responsive times 
are shown in Table 6. 

Table 6. Response times considering architectural reconfiguration 

 
Normal 

Response 
Time 

Reconfiguration  
Response  

Time 

Response time (ms) 7021±2243 26635±16419 
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For measuring the availability of the architectural solution, the worst case response 
time, associated with the architectural reconfiguration, was taken into account. The 
system was given a maximum response time of 43 seconds in which to provide a 
stock quote, if the system took longer than this, then it was considered to be 
unavailable. The results for the availability measurements are shown in Table 7. 

Table 7. Availability of the Comparator during reconfiguration 

Number of failures 9 

Availability (%) 97.69 

For the sake of completeness, accuracy measures were also performed when 
considering system reconfiguration. These were not expected to change, however as it 
can be observed from the results shown in Table 8, there was a slight improvement in 
the results perhaps due to the inconsistency of the quality of the data. 

Table 8. Accuracy of the Comparator during reconfiguration 

 Comparator 

 
Timestamp 

Failures 
Value 

Failures  

Number of failures 0 4 

Accuracy (%) 98.97 

4.4   Evaluation of the Fault Tolerant Registry 

The UDDI registry service has been tested on a UNIX server (Sun Microsystems 
Solaris 5.8), and a personal PC (a laptop running Microsoft Windows XP 
Professional, with an Intel Pentium III 1.0 GHz CPU and 512Mb memory). The 
UNIX server is responsible for running the master registry and the client, whereas the 
PC’s role is to run a slave registry. The network between the client and server has 
10Mbps bandwidth. The measurements were performed in normal office hours, and 
there was an unknown network load produced by other users of the university 
network. This is similar to the real deployment scenario, where the server could be 
running on a network that is connected to a number of components. 

The measurement for the reliability of the UDDI registry service was not 
performed, since it depends upon the reliability of the host running the UDDI, and 
these measurements were not available. The measurements were obtained by 
comparing the data published into the UDDI, related to a particular service, and the 
data subsequently retrieved from it. Since the UDDI did not produce any corrupted 
data during the evaluation trials, it is assumed that no failures occur that significantly 
affect both the accuracy and availability. Consequently, the remaining measurements 
left to be made was the response times between the clients and the registry. 

The most frequent usage of the UDDI registry service is related to service 
inquiries. However, this does not affect this UDDI modification since it has employed 
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the leasing time mechanism. This mechanism requires the registered services to 
periodically refresh their services, so that the internal states of system are frequently 
updated. The major difference between the two types of registry is the fault-tolerant 
UDDI requires its client stubs (ReplicaUDDIProxy) to download first the registered 
slave registries from the master registry. The time taken (553 milliseconds average) to 
download slaves has not been included, because this is only done the first time the 
ReplicaUDDIProxy is loaded.  

Table 9. Average times for the UDDI services (milliseconds) 

 
Non-Fault-Tolerant 

Registry 
Fault-Tolerant  

Registry 

Average response time 65 90 
Shortest response time 20 27 
Longest response time 1537 5321 

Inquiry time 27 30 
Publish time 80 120 

Recovery time N/A 
4201 

Backup time N/A 25 

From the data shown on Table 9, the average response time in the fault-tolerant 
UDDI is usually longer than the non-fault-tolerant UDDI. The difference is especially 
noticeable in the process of publishing requests and in the case when the master 
crashes. In the first case, the master has to wait for the slaves’ acknowledgement 
messages before sending back a reply to the clients. In the latter case, the long 
response time is due to the time taken on average for: 

• The network socket to timeout (2 seconds); 
• An available slave to be found (30 milliseconds); 
• The slave to be upgraded to become master including obtaining a new 
authToken (1021 milliseconds); 

• The message to be resent to the new master (151 milliseconds). 

In the fault-tolerant UDDI, the inquiry requests generally take less time (average 
30 milliseconds) than publish requests (average 120 milliseconds). The response time 
in this worst case could overall take up to 5321 milliseconds. This is because publish 
requests involve checking the validity of the authToken and include more 
transactions with databases. The result was estimated using the mixed requests with 
both inquiries and publishes. The final average response time is 90 milliseconds by 
testing 1,000 times. 

The system recovery time was measured from the time the service clients send 
requests to the client stub (ReplicaUDDIProxy), to the time the clients receive a 
reply from the client stub. The average time is 4201 milliseconds. 

The backup time was the time taken for the master to backup its latest internal state 
to registered slaves. This could be affected by the bandwidth of the network and the 
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processing power of the master and slaves involved. The average time is 25 
milliseconds.  

The actual response time can vary depending on the processing power of the 
computers, the number of records in the database and the bandwidth of the network. 
Furthermore, it usually takes longer the first time the registry performs the task. This 
directly affects the recovery time, in the case when the upgraded slave has not been 
used before. 

4.5   Discussion 

The evaluation performed on the architectural pattern has confirmed that the crash-
failure semantics improved the accuracy of the overall system, while the dynamic 
reconfiguration improved its availability. The only measure that has degraded it was 
the response time of the system, mainly when architectural reconfiguration was 
involved. This was an expected outcome, since provision of fault tolerance has the 
tendency of decreasing the performance of a system.  

The accuracy was improved by removing all the ambiguities from both the value 
and time domain of the data. Any discrepancy between two stock quotes would cause 
the data to be discarded, and part of the components of the architectural pattern would 
be forced to crash. For the continue provision of services the architectural pattern 
relies on its reconfiguration, which uses the registry for identifying alternative 
services.  

In our understanding, the overall evaluation figures could be improved if the 
criteria for correctness could be weakened by performing the comparison of stock 
quotes in terms of acceptable ranges, instead of strict equalities. Under the current 
setting, it was noticed that the architectural pattern is constantly reconfiguring itself, 
which degrades the overall performance of the system. 

5   Related Work 

An advantage of a component that suffers a crash-failure is that there is no uncertainty 
about its state: it either works correctly or halts. Schlichting and Schneider proposed a 
methodology for designing fault-tolerant computing systems based on the notion of 
fail-stop processors  [29]. They defined a fail-stop processor as one that halts 
automatically in response to any internal failure and does so before the effects of the 
failure become visible. Candea and Fox  [4], proposed a design based on the crash-
only semantics in which a component can be stopped only by crashing it, and started 
only by initiating recovery. This approach aims to support micro-recovery of system 
components for improving the availability of the whole systems, an idea that has 
already been applied to processors  [23]. The main difference between crash-failure 
and crash-only semantics is that, while the former enforces crash through internal 
mechanisms, the latter relies on external mechanisms for crashing the component. 

As already mentioned, the proposed architectural pattern presented in this paper is 
very similar to N Self-Checking Programming (NSCP), which is a diverse technique 
for software fault tolerance  [16] [15]. NSCP consists of four components grouped into 
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two pairs in hot standby redundancy. The two variants compare between themselves, 
and after the two pairs are compared with each other. Distinct from this technique, the 
proposed architectural pattern only tolerates node and communication faults, and 
because of that the second pair of replicas is actually not needed for a second level of 
comparison. When the first pair fails, the system reconfigures itself based on the 
availability of resources, which are identified through a look up services.  

The work presented by Tichy and Giese proposes an architectural solution, built on 
the Jini infrastructure, for improving the availability for application services. The 
architecture relies on principles, such as, service registry, leasing time of services, and 
smart proxies  [17]. The latter runs as part of the client application for performing 
reconfiguration between replicas.  

6   Conclusions 

In this paper, we have identified an architectural approach for improving the 
availability and correctness of Web Services by using fault-tolerance techniques, such 
as, enforcement of crash-failure and dynamic reconfiguration. However, there are 
applications other than data oriented that require more sophisticated solutions for 
maintaining the integrity of systems. In particular, those applications in which the 
state of the system cannot be lost, for these cases alternative architectures that exploit 
the redundancy and diversity of Internet services have to be investigated if the 
delivery of dependable services is paramount.  

The feasibility of the proposed architectural pattern was evaluated in the context of 
a Web Services application. The objective of the case study was to obtain, with 
minimal interruption, correct stock quotes. Considering Web Services and aiming to 
improve the overall dependability of the system, we have also proposed a fault 
tolerant UDDI registry and a Web Services broker. The provision of redundancies for 
the registry eliminates the existence of a single point of failure in the architectural 
solution, while the broker allows services to be selected according to their historical 
record, thus supporting the delivery of more dependable services. As part of the 
evaluation, a thorough analysis of the architectural implementation of the stock quote 
case study was performed adopting as evaluation criteria response time, availability 
and accuracy. Although the experimental setting might not be viewed as ideal for the 
kind of evaluation to be performed, new and thorough evaluations are planned in a 
more stable setting.  

As already mentioned, the focus of this paper was on the architectural modelling of 
systems that incorporate techniques for tolerating general class of faults. However, 
particularly in the context of Web Services, other techniques, such as exception 
handling, should be considered for dealing with specific types of faults that might 
occur either at the application level, or at the Web Services technologies, such as, 
SOAP messages or WSDL interfaces. Although, there have been some initiatives that 
deal with exceptions at SOAP level, nothing significant has been proposed at the 
WSDL level, which from the perspective of structuring systems should be the most 
relevant. 
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Abstract. Achieving high dependability of Web Services (WSs) dynamically 
composed from component WSs is an open problem. One of the main 
difficulties here is due to the fact that the component WSs can and will be 
upgraded online, which will affect the dependability of the composite WS. The 
paper introduces the problem of component WS upgrade and proposes solutions 
for dependable upgrading in which natural redundancy, formed by the latest and 
the previous releases of a WS being kept operational, is used. The paper 
describes how ‘confidence in correctness’ can be systematically used as a 
measure of dependability of both the component and the composite WSs. We 
discuss architectures for a composite WS in which the upgrade of the 
component WS is managed by switching the composite WS from using the old 
release of the component WS to using its newer release only when the 
confidence is high enough, so that the composite service dependability will not 
deteriorate as a result of the switch. The effectiveness of the proposed solutions 
is assessed by simulation. We discuss the implications of the proposed 
architectures, including ways of ‘publishing’ the confidence in WSs, in the 
context of relevant standard technologies, such as WSDL, UDDI and SOAP. 

1   Introduction 

The Web Service architecture [1] is rapidly becoming the de facto standard 
technology for achieving interoperability between different software applications 
running on a variety of platforms. This architecture supports development and 
deployment of open systems in which component discovery and system integration 
can be postponed until the systems are executed. Individual components (i.e. Web 
Services – WSs) advertise their services via a registry (typically developed using the 
UDDI standard1) in which their descriptions, given in a standard XML-based 
language called Web Service Definition Language (WSDL2), can be looked up. After 
                                                           
1 http://www.uddi.org/ 
2 http://www.w3.org/TR/wsdl 
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a WS capable of delivering the required service has been found it can be used or even 
dynamically integrated into a composite WS. 

The WS architecture is in effect a further step in the evolution of the well-known 
component-based system development with off-the-shelf (OTS) components. The main 
advances enabling this architecture have been made by the standardisation of the 
integration process (a set of interrelated standards such as SOAP3, WSDL, UDDI4, etc.). 
WSs are the OTS components for which a standard way of advertising their 
functionality has been widely adopted.  

The problem of dealing with online system upgrades is well known and a number of 
solutions have been proposed (see, for example [2]). The main reasons for upgrading the 
systems are improving/adding functionality or correction of bugs. The difficulties in 
dealing with upgrades of COTS components in a dependable way are well recognised 
and a number of solutions have been proposed. The WS architecture poses a new set of 
problems mainly caused by its openness and by the fact that the component WSs are 
executed in different management domains and are outside of the control of the 
composite WS. Moreover, switching such systems off or inflicting any serious 
interruptions in the service they provide is not acceptable, so all upgrades have to be 
dealt with seamlessly and online. One of the motivations for our work is that ensuring 
and assessing dependability of complex WSs is complicated when any component can 
be replaced online by a new one with unknown dependability characteristics.  

There is clearly a need to develop solutions making use of natural redundancy which 
exists in such systems and guaranteeing that the overall dependability of the composite 
system is improving rather than deteriorating. Note that the idea of using the old and the 
new releases of a program side by side to improve its dependability is far from new: it 
was first mentioned by B. Randell in his work on recovery blocks in which the earlier 
releases of the primary alternate are seen as a source of secondary alternates [3]. 

The rest of the paper is organised as follows. Section 2 gives an overview of the Web 
Service dependability and shows how it can be assessed using measures such as 
“confidence in WS correctness”. In section 3 we introduce the problem of a component 
WS upgrade. Section 4 discusses how keeping several releases of a component WS 
available can affect the composite WS. In section 5 we provide a brief description of the 
Bayesian inference and show how it can be applied in the context of WS for assessing 
the confidence in their correctness. Some simulation results are also presented to 
illustrate the effectiveness of the proposed architectural solutions. Finally, in section 6 
we briefly outline the on-going work on building a test harness for managed WS 
upgrade together with several ways of ‘publishing’ the confidence in a WS, compatible 
with relevant standards, such as WSDL, UDDI and SOAP. 

2   Web Services Dependability 

The WS architecture is now extensively used in developing various critical applications 
with high dependability requirements, such as banking, auctions, Internet shopping, 

                                                           
3 http://www.w3.org/TR/soap12-part0/ 
4 http://www.oasis-open.org/committees/uddi-spec/ 
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hotel/car/flight/train reservation and booking, e-business, e-science, business account 
management, which in turn demands adequate mechanisms for dependability assurance 
and dependability assessment in the new context of WSs (see [4], [5]). In [1] the idea of 
‘Service Management’ is advocated as a way of providing the users of a WS with 
information about its dependability. Such a service is achieved via a set of capabilities, 
such as monitoring, controlling, and reporting on the use of the deployed WS. 

Dependability of a computing system is the ability to deliver service that can be 
justifiably trusted [6]. Dependability of the Web Services is a system property that 
integrates several attributes, the most important of which are availability (including 
responsiveness), reliability (correctness), and security. For many applications it would 
be desirable if the service requester (consumer) could quantify these attributes by 
either assessing them independently or relying for the assessment on a third party, e.g. 
a trusted independent dependability broker or even the WS provider.  

We recognise that security is a very important dependability attribute, especially in 
the context of WSs. However, since the techniques for security assessment are still at 
an embryonic stage, security is not addressed in this paper. Whether the ideas 
presented here, e.g. confidence in security, are applicable, is to be seen when security 
assessment techniques mature. 

2.1   Web Services Failures 

A system failure is an event that occurs when the delivered service deviates from 
system specification.  

A number of approaches has been used to analyse failures, their modes, effects and 
causes in the context of Web Services [7], system software [8] and a computer system 
as a whole [6], [9]. In this paper we focus on the following failure modes. 

Transient failure – a failure triggered by transient conditions which can be 
tolerated by using generic recovery techniques such as rollback and retry even if the 
same code is used. 

Non-transient failure – a deterministic failure. To tolerate such failure the diverse 
redundancy should be used. Such redundancy naturally exists during WS upgrading 
when the old (one or more) and new releases of the same WS are available. 

Evident failure – a failure that needs no special means to be detected. It may be, for 
example, an exception, denial of service or absence of response during a predefined 
period of time, which will be detected by a general-purpose mechanism such as 
timeout. 

Non-evident failure – a failure that can be detected only by using the existing 
redundancy at the application level (e.g. in the form of diversity). It is clear, that the 
non-evident failures can have more dramatic consequence than the evident failures. 

This understanding of possible failure modes will be taken into account while 
building dependable Web Services and will affect the choice of the error detection 
mechanisms and fault-tolerance techniques employing several WS releases available 
online.  
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2.2   Confidence in the Web Services 

WSs, as any other complex software may contain faults which may manifest themselves 
in operation. In many cases the consumers of the WSs may benefit from knowing how 
confident they can be in the availability, responsiveness and correctness of the 
information processing provided by the WSs. This issue may seem new in the context of 
WSs but is not new for some well-established domains with high dependability needs 
such as safety critical applications for which it is not unusual to state dependability 
requirements in probabilistic terms, e.g. as probability of failure of software on demand 
[10].  

This fits nicely in the context of WSs, which can be seen as successive invocations of 
the operations published by a WS. It may be very difficult (or impossible) to guarantee 
that software behind a WS interface is flawless, but the confidence of the consumers 
will, no doubt, be affected by knowing for how long the service has been in operation 
and by how many failures have been observed. Informally, we will be much more 
confident in the results we get from a piece of software after we have seen it in 
operation for a long period of time without a failure than if we have not seen it in 
operation at all. How long software has been used is no guarantee that we will have high 
confidence in its dependability. Clearly, if we have seen it fail many times in the past we 
will take with doubt the next result that we get from this piece of software. 

Building confidence measures to assess the correctness, the availability and the 
responsiveness can be formalised. Bayesian inference [11] is a mathematically sound 
way of expressing the confidence combining the knowledge about how good or poor the 
service is prior to deployment with the empirical evidence which becomes available 
after deployment. A priori knowledge can be gained by the WS provider using standard 
techniques for reliability assessment, e.g. the quality of the development process or 
other techniques such as those described in [12]. 

The confidence in the dependability of the composite Web Service will be affected 
by the confidence in the dependability of the component WSs it depends upon and by 
the confidence in the dependability of the composition (the design of the composition 
and its implementation, i.e. the ‘glue’ code held in the composite WS itself). The 
confidence naturally links two important aspects – the value of the dependability 
attribute, e.g. probability of failure on demand, with the risk that the particular WS 
delivers this attribute (e.g. its probability of failure is better than the specific value). For 
instance, we may want to compare two WSs, A and B, for which the confidence is 
expressed as follows:  

− For WS A we have confidence 99% that its probability of failure on demand (pfd) 
is lower than 10-3, 70% that the pfd is less than 10-4, etc. 

− For WS B we have confidence 95% that its probability of failure on demand (pfd) 
is lower than 10-3, 90% that the pfd is less than 10-4, etc. 

Now which of the two WSs will be chosen depends on the dependability requirements, 
i.e. the particular dependability context: A will be used if the targeted pfd is 10-3, 
because the confidence that this target is satisfied with WS A is higher (99% vs. 95% 
with WS B). However, if a more stringent target is set, e.g. 10-4, then WS B should be 
preferred to WS A, because the confidence that it meets the target is higher (90% vs. 
70% with WS A). In the context of this – on-line upgrade management of a component 
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WS – confidence is particularly relevant. The key idea behind an upgrade managed on-
line is that the composite WS does not switch to the newest release of the component 
WS as soon as this new release becomes available since its dependability may suffer as 
a result. The new release may provide better functionality but it also brings in the 
increased risk that new faults may have arisen in the new release, which did not exist in 
the old release. A prudent policy of switching would be for the composite WS to wait 
until it gains sufficiently high confidence that the new release will not lead to 
deterioration of dependability.  

In section 5 we show how the Bayesian inference can be applied in the context of 
WSs for calculating the confidence of a component WS. 

3   The Web Service Upgrade Problem 

A well-known problem for any component-based software development with OTS 
components is the upgrade of the OTS components. When a new release of an OTS 
component is made available the system integrator has two options: 

1. Change their ‘integrated’ solution5 so that it can use the new release of the OTS 
component. This may cause problems for the integrated solution and significant 
effort to rectify. 

2. Stick to the old version of the OTS component and take the risk to face the 
consequences if the vendor of the OTS component ceases to support the old 
releases of the OTS component. 

Web-Service
1

URL: Node 1

Web-Service
2

URL: Node 2

WS1

WS2

Composite
Web-Service

URL: My Node

Composite
WS

All Web Services are published with their respective interfaces
according WSDL.

The  Composite Web Service uses Web Service 1 and
Web Service 2

 

Fig. 1. A UML Deployment diagram of a composite WS, Composite Web-Service, which 
depends on two other component WSs provided by third parties, Web-Service 1 and Web-
Service 2, respectively 

The situation with a composite WS is very similar. Indeed, WS 1 and WS 2 in Fig. 1 
are two component WSs used by a composite WS; conceptually this is equivalent to 
integrating any other OTS software component in an integrated solution. There may, 
however, be a difference from the maintenance point of view between a composite 
WS and an integrated solution in which OTS components are used. In the latter case, 
as indicated above, the integrator has a choice whether to update the integrated 

                                                           
5 A term used by ECUA: http://www.esi.es/en/Projects/ecua/ecua.htm  
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solution with every new release of the OTS components or not. Such a choice may 
not exist in the former case of composite WSs. The deployment of a composite WS 
assumes that the component WSs (Web-Service 1 and Web-Service 2 in our example 
in Fig. 1) used by the composite WS have been deployed by their respective 
providers. If the providers decide to bring down their WSs the composite WS may 
become unavailable, too. What seems more interesting is that when the provider of a 
component WS, on which the composite WS depends upon, decides to update their 
WS the provider of the composite WS may not be even notified about the update. The 
composite service may be affected without its provider being able to do anything to 
prevent this from happening. Thus, the provider of the composite WS is automatically 
locked-in by the very decision to depend on another WS. 

Are there ways out of the lock-in? If not, can the provider of the composite WS do 
something at least to make the consumers of the composite WS aware of the potential 
problems as a result of the update(s) which are beyond their control? Below we 
discuss two plausible alternatives. 

3.1   Third-Party Component WS Upgrade with Several Operational Releases 

This scenario is depicted in Fig. 2. The choice of whether to switch to a new release 
of a WS used by the composite WS is with the provider of the composite WS. They 
may use whatever methods are available to them to assess the dependability of the 
new release before deciding whether or not to move to the upgraded version(s) of the 
used component WS. 

The designer of the composite service may even make provisions at design stage of 
the composite WS which facilitate the assessment of the new releases of the services 
the composite service depends upon when these become available. An example of 
such a design would be making it possible to run ‘back-to-back’ the old and the new 
releases of the component WS used in the composite WS.  

Web-Service
1.0

URL: Node 1

Web-Service
2

URL: Node 2

WS
1.0

WS2

Composite
Web-Service

URL: My Node

Composite
WS

Web-Service
1.1

WS
1.1

 

Fig. 2. A new release, Web-Service1.1, of a component WS is released, but the old version, 
Web-Service1.0, is also kept operational. The new release has no effect on the composite 
service, Composite Web-Service, as long as it continues to use the old release, Web-Service1.0, 
of the component WS. Eventually, the composite service is ‘upgraded’ to use the newer 
version, Web-Service 1.1. 
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During the transitional period (i.e. after the new release, WS 1.1 in Fig. 2, becomes 
available) the old version of the component WS will continue to be the version used 
by the composite WS, but by comparing the responses coming from the old and the 
new release, WS 1.0 and WS 1.1 respectively, the provider of the composite WS will 
gain empirical evidence about how good the new release, WS 1.1, is. Once the 
composite service gains sufficient confidence in WS 1.1 it may switch to using it and 
cease using WS 1.0.  

Essentially, the composite service will have to run its own ‘testing campaign’ 
against the new release of the WS and may use the old release as an ‘oracle’ in 
judging if WS 1.1 returns correct responses. 

3.2   Third-Party Component WS Upgrade with a Single Operational Release 

Under this scenario Fig. 1 remains applicable: the most recent release of Web 
Service 1 will be deployed behind the interface WS 1. The options left to the 
provider of the composite WS are very limited. If the new release is at least 
distinguishable from the previous release, e.g. the release carries the release 
number, the provider of the composite WS will be able to detect the upgrade of the 
component WS and try to ‘adjust’ the confidence in the quality of the composite 
WS which may be caused by the upgrade and publish it to its consumers. A 
conservative view when calculating the impact of the upgrade on the dependability 
of the composite WS would be treating the upgraded component WS as if it were no 
better than the old release, i.e. the confidence in its dependability is no higher than 
the confidence in the old release as suggested in [12]. 

3.3   Own Component WS Upgrade with Several Operational Releases 

In some cases a composite WS may use the component WS maintained by the same 
vendor. In this case the upgraded component WS will be deployed in a way which 
reflects the vendor’s view on whether the upgraded component WS may have 
detrimental impact on the dependability of the own composite WSs which depends 
on the upgraded component WS.  

We expect that even in this case, when the vendor has access to the internal 
details of the upgraded component WS, that prudence may dictate deployment of 
the new release of the component WS side by side with the old release in a special 
environment which has features for transparent upgrade including: interactive 
features for monitoring the dependability of old and new versions (including typical 
adjudicator functionality for comparing their results), support for several modes of 
operations (using the old release only, running the old and the new releases in 
parallel and adjudication of their responses, switching to the new release only and 
phasing out the old release from the composite WS) and a standard interface (i.e. 
using the WSDL description of the component WS). The component WS provider 
should be able to monitor the way the new release of the WS is operating and 
choose the best way of ensuring the dependability of the service. The main 
difference between this form of the upgrade and the upgrade of the third-party 
component WS is that here the extra information that might be available about the 
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component WS may affect the way the dependability is measured. For instance, an 
extensive validation and verification (e.g. regression testing and testing the bugs of 
the previous release on the new release or the introduction of sophisticated 
mechanisms of fault-tolerance in the new release of the component WS) prior to 
deployment may justify placing high confidence in the dependability of the new 
release than has been achieved in the old release. This, in theory, may justify the 
immediate switch of the composite WSs developed by the same vendor to using the 
latest release of the component WS or at least configuring the environment 
responsible to manage the upgrade in a way, which will require a very limited 
amount of operational evidence before the composite WS switches s to using the 
upgraded component WS. 

4   Solutions for Dependable WS Upgrading 

In this section we describe several architectures which allow for a managed upgrade 
of a WS. The architecture can be deployed as part of a composite WS in which the 
WS in question is used as component WS or deployed by a dependability-conscious 
consumer of the WS aware of the inevitable upgrade of the WS. The architecture 
can also be deployed by the vendor of the WS if they want to provide high 
dependability guarantees to the consumers of the WS. In either case the impact of 
the upgrade on the consumers of the WS will be minimised.  

4.1   General Architecture 

The general architecture for a managed WS upgrade consists of: 

− a specialised middleware which runs several releases of the WS. The middleware 
intercepts the consumer requests coming through the WS interface, relays them to 
all the releases and collects the responses from the releases. It is also responsible 
for ‘publishing’ the confidence associated with the WS (or its releases); 

− a subsystem which monitors the behaviour of the releases and assess their 
dependability including confidence;  

− a management subsystem which adjudicates the responses from the replicas and 
returns an adjudicated response to the consumer of the WS. This subsystem is also 
responsible for reconfiguration (switching the releases on or off), recovery of the 
failed releases and for logging the information which may be needed for further 
analysis. 

The architecture can be used to implement the forms of upgrade discussed above: 
third-party WSs (Fig.3, 4) and own component WSs (Fig.5).  

The architecture for managed upgrade of third-party WS can be deployed either 
as part of the consumer of the WS (Fig.3) or as a composite WS solely dedicated to 
the management of the upgrade (Fig.4). The architecture shown in Fig 5 which is 
deployed by the WS provider and which makes the upgrade transparent for any 
service subscriber is particularly relevant in practice since it allows for optimal 
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management of the upgrade based on full knowledge about the design and 
implementation of the releases available to the vendor of the WS.  
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Fig. 3. Architecture for managed upgrade of third-party Web Service deployed by the consumer 
of the WS 
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Fig. 4. Architecture for managed upgrade of third-party WS deployed as a composite WS 
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Fig. 5. Architecture for managed upgrade of a WS deployed by the vendor of the WS 

4.2   Operating Modes with Several WS Releases 

There are some possible operating modes of the web services with several operational 
releases: 

1. Parallel execution for maximum reliability. All available releases of the WS are 
executed concurrently and their responses are used by the middleware to produce 
an adjudicated response to the consumer of the WS. Various adjudication 
mechanisms can be used which range from tolerating evident failures only to 
detecting and tolerating non-evident failures. In the latter case some form of self-
checking may be need which will allow for diagnosing which of the releases has 
produced a (non-evidently) incorrect response before the adjudicated response can 
be determined.  

2. Parallel execution for maximum responsiveness. All available releases of the WS 
are executed concurrently and the fastest non-evidently incorrect response is 
returned to the consumer of the service as an adjudicated response.  

3. Parallel execution with dynamically changed reliability/responsiveness. It is a 
generalised parallel execution mode. All available releases of the WS are executed 
concurrently. The middleware may be configured to wait for up to a certain 
number of responses to be collected from the deployed releases, but no longer than 
a pre-defined timeout. The actual responses collected are then adjudicated to define 
the response returned to the consumer of the WS. The number of responses and the 
timeout can be changed dynamically so that different configurations for the 
adjudicated response can be defined.  

4. Sequential execution for minimal server capacity. The releases of the WS are 
executed sequentially (the order of execution can be chosen randomly or can be 
predefined). The subsequent releases are only executed if the responses received 
from the previous releases are evidently incorrect. A variation of this mode would 
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be to collect more than one non-evidently incorrect responses and adjudicate them 
using an appropriate rule. 

4.3   Monitoring and Measurement 

The monitoring subsystem conducts measurement of the dependability characteristics 
including the confidence associated with them of the deployed releases of the WS, 
compares their responses.  

Every time the consumer invokes the WS this subsystem monitors the availability 
(timeout can be used to detect if the service is down), execution time and the 
correctness of the responses for each releases of the WS and stores these parameters 
in a database. Detecting non-evident failures and diagnosing the release which has 
returned a non-evidently incorrect response is far from trivial. The implications of 
using imperfect detection/diagnosis for the confidence are scrutinised in section 5.1. 

4.4   Management 

The main functions of this subsystem are controlling several operational releases and 
choosing the current operational mode, which is based on dependability assessment 
conducted by the monitoring subsystem. Adjudicating the responses collected from 
the deployed releases and returning a response to the consumer of the WS is also a 
responsibility of this subsystem. The adjudication mechanisms have already been 
discussed together with the operating modes in section 4.2.  

5   Assessment and Modelling 

5.1   Bayesian Approach to Assessment of Confidence in Web-Service  

In this section we illustrate how the Bayesian approach is normally applied to 
assessing the confidence associated with a single dependability attribute, e.g. the 
probability of failure on demand (pfd).  

If the WS is treated as a black box, i.e. one can only distinguish between failures or 
successes (Fig. 6), the Bayesian assessment proceeds as follows.  

Request 

WS 

Response 

 

Fig. 6. Black-box model of a WS. The internal structure of the WS is unknown. Only 
correctness of the response (success or failure) is recorded on each request and used in the 
inference of the WS’s pfd 

On every request the WS may succeed, i.e. return a correct response, or fail, i.e. 
return an incorrect response or not return any response at all. The failure behaviour of 
the WS is characterised by the probability of failure (pfd). Let us denote it as p. This 
probability will vary between the environments in which the WS is used. The various 
factors, which affect the pfd may be unknown with certainty, thus the value of pfd  
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may be uncertain. This uncertainty is captured by a (prior) probability distribution 
)(•pf , which characterises the assessor’s knowledge about the system pfd prior to 

observing the WS in operation. This distribution quantifies the assessor’s perception 
that some values of pfd are more likely than some other values. 

Assume further that the WS is subjected to n requests, a sample of demands drawn 
from a ‘realistic’ operational environment (profile), and r failures are observed6. 
Presented with the new evidence the assessor may change their a priori uncertainty 
about the pfd of the WS. Now it will be represented by a posterior distribution, 

),|( nrf p • , of p after the observations, which is defined as: 

)()|,(),|( xfxrnLnrxf pp ∝ , (1) 

where )|,( xrnL  is the likelihood of observing r failures in n demands if the pfd were 

exactly x, which in this case of independent demands is given by the binomial 

distribution, rnr xx
r

n
xrnL −−= )1()|,( .  

(1) is the general form of the Bayes’s formula, applicable to any form of 
likelihood and any prior distribution. 

Now assume that the WS is implemented as shown in Fig. 5, i.e. two releases of 
the WS are deployed in parallel, which see and process ‘independently’ a request 
from a consumer of the WS. On each demand (request) there are 4 possible outcomes 
which can be observed, given in Table 1 below. The four probabilities given in the 
last column of Table 1 sum up to 1. Even if these probabilities are not known with 
certainty, i.e. they are treated as random variables, their sum will be always 1. Thus, a 
joint probability distribution of any three (out of the four listed in Table 1) of these 
probabilities, e.g. ),,(

111001 ,, •••pppf , gives an exhaustive description of the uncertainty 

associated with the failure behaviour of the system, which in this cases consists of 
WS1.0 and WS1.1. In statistical terms, the model has three degrees of freedom.  

The probabilities that WS 1.0 will fail, let us denote it pA, and that WS 1.1 will fail, 
pB, respectively, can be derived from the probabilities used in Table 1 as follows:  

1110 pppA +=  and 1101 pppB += . 

Table 1. A joint probability distribution  

Event WS 1.0 WS 1.1 Observed in n tests Probability 
α Fails  Fails r1 11p  

β Fails Succeeds r2 10p  

γ Succeeds  Fails r3 01p  

δ Succeeds Succeeds r4 00p  

 

                                                           
6 The number of observed failures can be 0 
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p11 represents the probability that both releases of the WS fail, hence the notation  
pAB ≡ p11 captures well the intuitive meaning of the event it is assigned to.  

Instead of using ),,(
110110 ,, •••pppf  we can use any other distribution, which can be 

derived from it through functional transformation. In this section we will use 
),,(,, •••

ABBA pppf .  

It can be shown that for a given observation (r1, r2, and r3 in N demands) the joint 
posterior distribution, ),,,|,,( 321,, rrrNf

ABBA ppp ••• , can be calculated as: 

=

ABBA

ABBA

ABBA

ABBA

ppp

ABBAppp

ABBAppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,

321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

, (2) 

where ),,|,,,( 321 ABBA ppprrrNL is the likelihood of the observation [13]. 
The posterior distribution, ),,,|,,( 321,, rrrNf

ABBA ppp ••• , represents the updated 

uncertainty about the system failure behaviour consistent with the prior and the 
observations. From this distribution one can derive the marginal uncertainties 
associated with the probabilities of failure of each of the releases, 

)|( nobservatiof
Ap • , )|( nobservatiof

Bp •  and of the probability of coincident failure 

of both releases, )|( nobservatiof
ABp • . For instance the distribution of the probability 

of coincident failure, )|( nobservatiof
ABp • , can be derived from 

),,,|,,( 321,, rrrNf
ABBA ppp •••  by integrating out the ‘nuisance parameters’ PA and PB: 

( ) =
A B

BAABAB

P P

BAPPPP dPdPnrrrzyxfnrrrxf ),,,|,,(,,,| 321,,321  (3) 

Similarly the marginal posteriors, )|( nobservatiof
Ap •  and )|( nobservatiof

Bp •  , 

can be expressed as: 

( ) =
B AB

BAABA

P P

ABBPPPP dPdPnrrrzyxfnrrrxf ),,,|,,(,,,| 321,,321  (4) 

( ) =
A AB

BAABB

P P

ABAPPPP dPdPnrrrzyxfnrrrxf ),,,|,,(,,,| 321,,321  (5) 

The expressions (3-5) can be used to calculate the confidence that the pair or 
each of the channels meet a specific reliability target. For instance, the confidence 
that the probability of failure of the old release is smaller than a given target, T,  
will be: 



 Dependable Composite Web Services with Components Upgraded Online 105 

( ) =≤
T

APA dPnobservatioxfTnobservatioPP
A

0

)|(|  (6) 

Using (6) we can calculate a set of percentiles for a set of confidence values, e.g. 
{90%, 95%, 99%,…}. For instance, the 99% percentile of channel A, TA99%, is a value 

of the PA such that =
%99

0

%99)|(
A

A

T

AP dPnobservatioxf .  

5.1.1   Examples 
We will illustrate how the Bayesian inference can be used to determine the duration 
of the WS managed upgrade (Fig. 5), i.e. when the old release can be replaced by the 
new one. We will use for this purpose several contrived but plausible scenarios.  

5.1.1.1 Scenarios 
Scenario 1 
In this scenario we assume that the old release has been used for a very long time and, 
as a result, its reliability has been measured accurately: its pfd is believed to be 10-3, 
and the uncertainty associated with this is very low. The new release has been 
significantly changed, compared with the old release. It is believed that the new 
release is an improvement, i.e. that its pfd is lower than the pfd of the old release, but 
since it has not seen a significant operational use there is a significant level of 
uncertainty about how good the new release actually is. We parameterise this scenario 
using the following prior distribution: 

− The distribution of the pfd of the old release, PA, is a Beta(αA, βA) distribution, 
)(•

Apf , defined in the range [0, 0.002] with parameters αA = 20, βA = 20, i.e. the 

expected value of PA is indeed 10-3, consistent with the prior measurements. The 
parameters are chosen such that the distribution mass is concentrated in a very 
narrow interval, which adequately represent the low level of uncertainty about the 
‘true’ pfd of the old release. 

− The distribution of pfd of the new release, PB, is also a Beta(αB, βB) distribution, 
)(•

Bpf , defined in the same range [0, 002], with parameters αB = 2, βB = 3, chosen 

such that the expected value of PB is 0.8×10-3, i.e. slightly better than the expected 
value of PA, but the level of uncertainty about the true pfd of the new release is 
significant. 

− We assumed that PA and PB are independently distributed, i.e. 
)()(),(, ••=••

BABA pppp fff . 

− We assume uniform distribution of the conditional probability PAB|PA,PB in the 
range [0,min(PA, PB)], which represents the assessor being ‘indifferent’ about the 
values of the probability of coincident failure. This, in fact, is a very conservative 
assumption, since the expected value is 1/2 of min(PA, PB), i.e. the system is 
expected to tolerate only 50% of the failures, which seems justified given the fact 
that we are dealing with two releases of the same product.  
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Scenario 2 
In this scenario we assume that the old release has been only used for a short time 
without a failure. The uncertainty associated with the pfd of the release, therefore, is 
significant. The new release has been produced following a very thorough 
development process. However since this process has never been applied in the 
context of WS there is a significant level of uncertainty about the pfd of the new 
release, too.  

The new release is conservatively considered to be worse than the old release. This 
scenario is parameterised with the following prior distribution: 

− The distribution of pfd of the old release, PA, is a Beta(αA, βA) distribution, 
)(•

Apf , in the range [0, 0.01] with parameters αA = 1, βA = 10, i.e. the expected 

value of PA is ~10-3, but a significant level of uncertainty is built-in this prior. 
− The distribution of pfd of the new release, PB, is also a Beta(αB, βB) distribution, 

)(•
Bpf , with parameters as in the first scenario αB = 2, βB = 3. The level of 

uncertainty about the true pfd of the new release is significant. 
− We assumed, again, that PA and PB are independently distributed, i.e. 

)()(),(, ••=••
BABA pppp fff . 

− As in the previous scenario, we assume uniform distribution of the conditional 
probability PAB|PA,PB in the range [0,min(PA, PB)]. 

50,000 observations used with the two scenarios have been Monte-Carlo simulated 
using the following parameters: 

Scenario 1: PA = 10-3, PB|A failed = 0.3, PB|A did not fail = 0.5×10-3. The chosen 
parameters define a marginal probability of failure for the new release PB = 0.8×10-3. 
Thus the marginal pfd of both channels are equal to the expected values of their 
respective distributions. The chance of coincident failure of the releases is significant: 
every 3 out of 10 failures of the old release will coincide with failures of the new 
release. This is, however, less frequent than assumed in the prior (every other failure 
of the less reliable channel was assumed to coincide with a failure of the more reliable 
channel).  

Scenario 2: PA = 5×10-3, i.e. the actual pfd is significantly worse than assumed in 
the prior (the mean of the prior distribution is 10-3), PB|A failed = 0.1, PB|A did not fail 
= 0 (i.e. never failed on its own). The chosen parameters define a marginal probability 
of failure for the new release PB = 0.5×10-3, an order of magnitude better than the old 
release.  

5.1.1.2 Upgrade Criteria (Switching from Managed Upgrade to WS 1.1) 
We will apply a few plausible alternatives of switching from the old to the new 
release as follows: 

− Criterion 1: the new release, WS 1.1, reaches the dependability level offered by the 
old release, WS 1.0, at the time of deploying the managed upgrade, i.e. as defined 
by the prior distribution, )(•

Apf . For instance, if prior to the upgrade there P(PA ≤ 

X)= 99%, then the managed upgrade should last until P(PB ≤ X) = 99%, i.e. the 
same confidence, 99%, is build that WS 1.1 is better than X. This scenario does not 
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address the possibility that during the managed upgrade the knowledge about WS 
1.0 may also change: it may turn out to be worse or better than thought prior to 
deploying the managed upgrade. 

− Criterion 2: the new release, WS 1.1, reaches a predefined level of dependability 
with a predefined level of confidence, e.g. P(PB ≤ 10-3) = 99%. Under this criterion 
the dependability of the old release, WS 1.0, prior or during the managed upgrade 
is irrelevant. 

− Criterion 3: With a given confidence, e.g. 99%, the new release, WS 1.1, is better 
than the old release, WS 1.0. In other words, for the 99% percentiles of the releases 
the following inequality holds: TB99% ≤ TA99%. Clearly, this criterion takes into 
account the possibility that the priors of both WS 1.0 and WS 1.1 may be 
‘inaccurate’ and may evolve to different distributions during the managed upgrade. 

5.1.1.3 Imperfection of Failure Detection 
As described above, Bayesian inference depends on the observations and, thus, 
imperfection in detecting failures of WS releases will, inevitably, affect the 
posteriors, hence the decisions when to switch to using the new release. We 
simulated omission failures only, i.e. such that some demands on which the releases 
did fail were counted as being correct. This type of failure may have dangerous 
consequences. First, because incorrect responses may have been returned to the 
consumers of the WSs, and, second, because the inference may produce optimistic 
predictions, which, in turn, may lead to premature decisions to switch to the new 
release before the required confidence has been achieved. The following omission 
failures have been simulated: 

− omission failure of the ‘oracles’ judging the correctness of the responses from each 
of the releases; 

− back-to-back testing under the pessimistic assumption that all coincident failures 
will be identical and non- evident.  

The first kind on failure will lead to changes of the scores on a demand of a release 
from ‘1’ (failure) to ‘0’ (success). The greater the likelihood of such a failure the 
more optimistic the observations become – in the extreme case when the omission 
failure takes place with probability 1 – the inference will be supplied with 
observations ‘No failure’ no matter how many times the release in question has 
failed. 

The effect of the second kind of failure on the observations will be limited to 
those demands on which both releases fail. In this case the scores ‘11’ (coincident 
failure of both releases) will be replaced by ‘00’ (success of both). Clearly, in real 
operation there may be coincident but different failures, which will be detected by 
back-to-back testing and there is a good chance that on this demand the score of at 
least one of the releases will be correctly counted as a failure. 

We did not include in our study the ‘false alarm’ type of failure of the failure 
detection mechanisms, i.e. when an ‘oracle’ flags out as a failure a valid response 
from a release. Although in practical systems this may be a concern, its implications 
are not dangerous: the consumers may be required to ignore valid responses and the 
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inference will produce pessimistic predictions. As a result the decision to switch to 
the new release may be delayed beyond the sufficient evidence that the new release 
has met the set dependability target. 

5.1.1.4 Inference Results 
The results of the study are summarised below in Table 2, in which we show for the 3 
criteria specified in 5.1.1.2 how long the managed upgrade (Fig. 5) should last before 
switching from WS 1.0 to WS 1.1. For Criterion 2 we used P(PB ≤ 10-3)=99% as the 
target for the switch.  

Table 2. Duration of managed upgrade  

   Criterion 1 Criterion 2 Criterion 3 

Perfect ‘oracles’ 35,500 demands Not attainable  
(> 50,000) 

40,000 demands 

Omission, Pomit = 0.15 22,000  
(oscillates till 26,000) 

50,000 demands 35,000 demands 

Sc
en

ar
io

 1
 

Back-to-back testing 20,000 40,000 34,000 demands 

Perfect ‘oracles’ 1,400 demands 10,000 demands 1,100 demands 

Omission, Pomit = 0.15 1,400 demands 7,000 1,100 demands 

Sc
en

ar
io

 2
 

Back-to-back testing 1,400 demands 6,000 demands 1,100 demands 

One can see from Table 2 that the effect of the detection coverage upon the 
duration of the managed upgrade is significant, which is hardly surprising. We 
further use 90% and 99% percentiles to illustrate the relationship between the 
failure detection coverage and the confidence. Fig. 7, clearly indicates, however, the 
link that exists between the imperfection of the detection mechanism deployed and 
the confidence in having achieved the specified target, Criterion 1 in this case. For 
instance, consider the 90% percentile that the new release is as reliable as the old 
release was prior to the upgrade (the solid thin curve in Fig. 1). This percentile 
remains always lower not only than the 99% percentile with perfect oracle (which is 
always the case), but also than the 99% percentile with imperfect oracles which 
miss a failure with probability 0.15. In other words, using imperfect oracles with 
detection coverage of 85% (which is often seen as achievable, e.g. [14]) and using 
Bayesian inference in this case means that the confidence error caused by the 
imperfection of the oracles is no greater than 9%. At any stage of the inference what 
the assessor would consider to be a 99% percentile on the pfd of the new release 
will actually be no worse than 90% percentile.  

The difference between the inference with perfect detection and back-to-back 
testing is slightly different – the error up to ~20,000 demands does not exceed 9% 
and then becomes greater than 9%. Incidentally, it is 20,000 demands when the 
decision will be taken to switch to the new release (Table 2), i.e. the actual 
confidence achieved at this time will be no worse than 90%. 
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Imperfect Detection vs. Confidence
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Fig. 7. Scenario 1: percentiles for perfect and imperfect failure detection 
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Fig. 8. Scenario 2: percentiles for perfect and imperfect failure detection 
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It is worth mentioning that the number of demands needed in order to get the 
required level of confidence under Scenario 1 are significant. This is a consequence of 
the pfd targets being very close to what the real reliability of the new release is (the 
explicitly stated target of 10-3 remains unattainable with perfect detection even after 
50,000 demands). A significant number of failures is observed which does not allow 
the assessor to build quickly the required confidence. 

Scenario 2 in this respect is very different – the targets to be met by the new 
release are significantly worse than what the ‘true’ pfd of this release is. Under this 
scenario the prior confidence in the old release was also low due to the minimal 
operation exposure of this release. As a result, meeting the set targets (with all 3 
criteria) requires significantly fewer demands. The effect of imperfect detection on 
the decision to switch to the new release under this scenario is illustrated in Fig. 8. 
The 90% percentile with perfect failure detection remains lower than the 99% 
percentile with imperfect detection throughout the entire range of demands of interest, 
including the values when a decision to switch to the new release will be taken (up to 
7000 demands). Thus, again, the effect imperfect of the failure detection on the 
confidence is relatively modest – the error is less than 9%. 

5.1.2   Realism of Bayesian Inference in the Context of Web-Services 
Two important aspects of using Bayesian assessment in the context of Web-services 
are worth mentioning:  

1. The choice of a prior is important, as it is for Bayesian inference in any other 
context. In the context of a managed upgrade we use a white-box inference, which 
requires a trivariate distribution, ),,(,, •••

ABBA pppf  to be defined. This is far from 

trivial. It is reasonable to expect that the marginal distributions, )(•
Apf  and 

)(•
Bpf , will be available in some form. The old release will have seen some (in 

some cases long) operational exposure, which is relatively straightforward to 
translate into confidence using a black-box inference. The new release will have 
been subjected to some level of testing, but the prior will be largely based on 
expert judgement, and thus will leave significant uncertainty about the true value of 
the pfd. The real difficulty is in defining the third variate of the distribution, which 
characterises how likely the two releases of the WS are to fail together. Since we 
are dealing with two releases of the same service it is plausible to assume high 
level of correlation between their failures7. The ‘indifference’ assumption, which 
we used in our examples, seems a safe option. Even if the prior is inaccurate we 
leave it ‘open to quick changes’ as new empirical evidence becomes available 
(‘data will speak for itself’). The downside of the safe option is that it will take 
some time for the error in the prior to be compensated, which will delay the 
decision to switch to the new release. This is, however, the inevitable price to be 

                                                           
7 This plausible view is counterbalanced by the empirical fact that in many cases the new 

releases of software products may fail in circumstances where the old releases do not. Thus, 
even if the new release fixes faults in the old release(s) it is far from clear whether the new 
release is always an improvement and what might be a plausible expectation regarding the 
coincident failures. 
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paid for the extra assurance that the WS dependability will not deteriorate as a 
result of the upgrade. 

2. Coverage of the deployed failure detection mechanism. We have only touched 
upon this aspect due to the limited space and further studies are needed in order to 
get further insight into the relationship between the detection coverage and the 
confidence achieved. The results presented here seem to suggest that this problem 
can be tackled relatively simply. In our examples we saw a consistent picture that 
~10% imperfection of failure detection translates into error in predicted confidence 
less than 10%. If this is consistent across many systems a relatively simple 
engineering rule of thumb can be defined so that despite the errors the needed 
confidence is actually achieved and one can proceed with the switch to the new 
release. In fact the limited coverage of failure detection is not necessarily a 
problem! It is clearly a problem when an explicit dependability target for the new 
release is stated (Criterion 2), but we doubt that this criterion is appropriate for the 
context of the WS upgrade. Indeed, it seems always worth deploying the more 
dependable release, even if it does not meet an explicitly stated higher target. 
Making a decision to switch to the new release based on comparison of the two 
releases (i.e. Criterion 1 or 3 defined above) seems much more plausible than wait 
until the new release meets an explicit target. Under these circumstances both 
releases will have been affected by the limited coverage of the deployed detection 
mechanisms. It seems reasonable to assume that the imperfect detection will affect 
both releases similarly, hence the decision to switch even based on inaccurate 
measurements will be justified. 

Despite these problems, it seems clear that Bayesian inference can be used to 
assess the confidence in dependability of WS releases and control the managed 
upgrade of WSs.  

5.2   Simulation Modelling of the Dependable WS Upgrading 

5.2.1   Model Description 
An event-driven simulation model, executed in the MATLAB 6.0 environment, was 
developed to analyse the effectiveness, both in terms of improved dependability and 
performance, of the managed WS upgrade. Below we present the simulation results 
obtained for running concurrently two releases of a WS. The middleware for managed 
upgrade implements the following rules:  

1. A request from a consumer is forwarded to both releases; 
2 The middleware waits to collect responses from the releases, but no longer than a 

predefined Timeout. The collected responses are adjudicated and the consumer of 
the WS is presented with the adjudicated response. The implemented adjudication 
rules are as follows: 

− if all collected responses are evidently incorrect then the middleware raises an 
exception (i.e. the adjudicated response itself is evidently incorrect);  

− if all releases return the same response (correct or non-evidently incorrect) then 
this response is returned to the consumer of the Web Service, too;  

− if all the responses collected from the releases are valid (i.e. none is evidently 
incorrect), then the middleware returns to the consumer of the Web service a 
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response, selected at random from the ones collected. Clearly, even if a correct 
response exists among the collected ones a possibility still exists that the consumer 
of the Web service gets an incorrect response, when the middleware picks at 
random an incorrect response from those collected; 

− if the TimeOut expires and a single valid response is collected this response is 
returned to the consumer of the Web service, which may turn out to be non-
evidently incorrect.  

− if no response has been collected the middleware returns a response ‘Web Service 
unavailable’. 

It takes each release some time (execution time) to respond to a request. The 
execution times of the releases may be affected by various factors. The execution time 
is modelled as a sum of two components as follows: 

Ex. Time(Release(i))=T1+T2(i)  (7) 

where T1 – is the same for both releases and models the computational difficulty of  
the demand, which is common for both releases, while T2(i) may differ for the two 
replicas and may be due to differences between the releases. Both T1 and T2 are 
simulated as exponentially distributed random variables, exp(T1Mean), 
exp(T2Mean1) and exp(T2Mean2), respectively, with different parameters.  

The overall execution time of the system with several operational releases of the 
WS is calculated as: 

Ex. time(WS) = min(TimeOut, max(Ex. time(Release(i)))+dT (8) 

where dT is the time taken by the middleware to adjudicate the release responses. 
The behaviour of the releases is simulated under the assumption that a degree of 

correlation between the types of responses exists which is modelled through a set of 
conditional probabilities: 

P(slower response is X | faster response is Y) (9) 

Where the types of responses (X and Y) are: 

− correct (CR); 
− evident failure (ER); 
− non-evident failure (NER). 

A special case would be independence of the behaviour of the releases (i.e. the type of 
response they returns on demand), which is included in our results for reference, 
although it is clearly unrealistic. 

5.2.2   Simulation Settings 
The execution times were simulated with the following parameters:  

− T1Mean=0.7 sec;  
− T2Mean1 = T2Mean2=0.7 sec;  
− dT=0.1 sec. 

The choice of simulation parameters was dictated by us trying to cover realistic 
scenarios. In particular we varied widely the degree of correlation between the 
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behaviour of the simulated channels both in terms of correct and different types of 
incorrect responses. 

Table 3. Marginal probabilities associated with the responses of the releases 

 Independent probabilities for different outcomes 
Release 1 (Rel1) Release 2 (Rel2) Run 

CR ER NER CR ER NER 
1 0.70 0.15 0.15 0.70 0.15 0.15 
2 0.70 0.15 0.15 0.60 0.20 0.20 
3 0.70 0.15 0.15 0.50 0.25 0.25 
4 0.60 0.20 0.20 0.40 0.30 0.30 

Table 4. Conditional probabilities associated with the response from the slower release (10) 

Probabilities: P(outcome Rel2 | outcome Rel1) Run Condition 
CR ER NER 

CR 0.90 0.05 0.05 
ER 0.05 0.90 0.05 1 

Outcome of 
Release 1 

NER 0.05 0.05 0.90 
CR 0.80 0.10 0.10 
ER 0.10 0.80 0.10 2 

Outcome of 
Release 1 

NER 0.10 0.10 0.80 
CR 0.70 0.15 0.15 
ER 0.15 0.70 0.15 3 

Outcome of 
Release 1 

NER 0.15 0.15 0.70 
CR 0.40 0.30 0.30 
ER 0.30 0.40 0.30 4 

Outcome of 
Release 1 

NER 0.30 0.30 0.40 

5.2.3   Simulation Results 
The simulation results – mean execution time and number of responses of different 
types - are presented in Tables 4 and 5 obtained on 10,000 requests processed under 
different regimes, as defined in section 5.2.2.  

The simulation results can be summarised as follows: 

1. The system availability offered by the architecture for managed upgrade is higher 
than the availability of each of the versions. This is to be expected since the 
system is a 1-out-of-2 system. This observation is important because it reduces 
the pressure of having to switch to the new release quickly. From the point of 
view of dependability the managed upgrade is the best alternative – the 1-out-of-
2 by definition is no worse than the more reliable channel. Thus we can prolong 
the switch to the new release as long as necessary without any negative 
implications for the dependability of the service. 
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Table 5. Simulation results assuming positive correlation between release failures 

TimeOut = 1.5 sec TimeOut = 2.0 sec TimeOut = 3.0 sec 
Run Observations

Rel1 Rel2 System Rel1 Rel2 System Rel1 Rel2 System 

MET8 1.0077 1.0054 1.2194 1.0077 1.0054 1.2290 1.0077 1.0054 1.2357 
CR 6709 6230 6762 6785 6301 6815 6840 6348 6851 

EER 1443 1668 1449 1460 1690 1470 1470 1706 1475 
NER 1412 1664 1463 1428 1676 1472 1437 1686 1480 

O
ut

co
m

es
 

Total 9564 9562 9674 9673 9667 9757 9747 9740 9806 
NRDT9 436 438 326 327 333 243 253 260 194 

1 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 
2 MET 0.9955 0.9912 1.2052 0.9955 0.9912 1.2148 0.9955 0.9912 1.2214 

CR 6733 5706 6683 6819 5764 6755 6866 5802 6780 
EER 1420 1944 1502 1436 1964 1506 1452 1982 1529 

NER 1414 1941 1504 1434 1962 1514 1447 1983 1522 

O
ut

co
m

es
 

Total 9567 9591 9689 9689 9690 9775 9765 9767 9831 
NRDT 433 409 311 311 310 225 235 233 169 

 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 
MET 0.9870 0.9949 1.2153 0.9870 0.9949 1.2153 0.9870 0.9949 1.2213 

CR 6777 5231 6661 6777 5231 6672 6823 5268 6702 
EER 1438 2217 1530 1438 2217 1521 1449 2230 1526 
NER 1492 2269 1611 1492 2269 1609 1503 2283 1618 

O
ut

co
m

es
 

Total 9707 9717 9802 9707 9717 9802 9775 9781 9846 
NRDT 293 283 198 293 283 198 225 219 154 

3 

Total req. 10000 10000 10000 10000 10000 10000 10000 10000 10000 
MET 0.9966 0.9925 1.2097 0.9966 0.9925 1.2183 0.9966 0.9925 1.2246 

CR 6744 3519 6395 6808 3559 6462 6845 3581 6491 
EER 1434 3016 1635 1444 3042 1629 1457 3065 1631 
NER 1436 3076 1679 1456 3106 1689 1467 3134 1705 

O
ut

co
m

es
 

Total 9614 9611 9709 9708 9707 9780 9769 9780 9827 
NRDT 386 389 291 292 293 220 231 220 173 

4 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 

2 The mean execution time recorded for the system is greater than for the 
individual releases. This is the price for the improved dependability assurance 
provided by the fault-tolerant architecture – it waits for the second (i.e. slower) 
response before adjudicating the responses. Some improvement can be achieved 
by returning to the consumer the fastest response as soon it is received. dT is 
inherent for the chosen architecture and cannot be eliminated. The performance 
penalty inevitable with the managed upgrade is the real reason for us to try to 
minimise its duration. 

                                                           
8 MET – mean execution time, in sec. 
9 NRDT – no response received within TimeOut  
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Table 6. Simulation results assuming independence of release failures  

TimeOut = 1.5 sec TimeOut = 2.0 sec TimeOut = 3.0 sec 
Run Observations

Rel1 Rel2 System Rel1 Rel2 System Rel1 Rel2 System 
MET 0.9995 0.9959 1.2095 0.9995 0.9959 1.2191 0.9995 0.9959 1.2267 

CR 6729 6647 7759 6794 6709 7812 6852 6770 7853 
EER 1406 1447 755 1424 1458 758 1432 1473 768 
NER 1453 1481 1177 1471 1496 1194 1483 1514 1201 

O
ut

co
m

es
 

Total 9588 9575 9691 9689 9663 9764 9767 9757 9822 
NRDT 412 425 309 311 337 236 233 243 178 

1 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 
MET 1.0086 1.0081 1.2239 1.0086 1.0081 1.2327 1.0086 1.0081 1.2386 

CR 6730 5712 7396 6805 5780 7470 6856 5824 7509 
EER 1428 1928 1021 1443 1947 1017 1454 1956 1013 
NER 1424 1949 1286 1446 1971 1292 1455 1992 1309 

O
ut

co
m

es
 

Total 9582 9589 9703 9694 9698 9779 9765 9772 9831 
NRDT 418 411 297 306 302 221 235 228 169 

2 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 
MET 0.9856 0.9894 1.2013 0.9856 0.9894 1.2107 0.9856 0.9894 1.2175 

CR 6700 4816 6982 6775 4869 7039 6834 4904 7079 
EER 1432 2400 1203 1446 2424 1226 1459 2445 1245 
NER 1458 2378 1510 1471 2404 1515 1483 2436 1519 

O
ut

co
m

es
 

Total 9590 9594 9695 9692 9697 9780 9776 9785 9843 
NRDT 410 406 305 308 303 220 224 215 157 

3 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 
MET 0.9884 0.9926 1.2031 0.9884 0.9926 1.2126 0.9884 0.9926 1.2193 

CR 6687 3855 6624 6762 3887 6680 6813 3917 6704 
EER 1419 2823 1416 1434 2865 1429 1444 2885 1444 
NER 1484 2886 1656 1504 2928 1672 1518 2955 1687 

O
ut

co
m

es
 

Total 9590 9564 9696 9700 9680 9781 9775 9757 9835 
NRDT 410 436 304 300 320 219 225 243 165 

4 

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000 

3 Somewhat unexpected result from this simulation is the fact that when the releases 
are assumed highly correlated (the first run in Table 5 with correlation between the 
releases 0.9) the reliability of the system is higher than the reliability of either of 
the two releases. When the correlation between the releases goes down (runs 2-4 in 
Table 5 with correlation 0.8 – 0.4) the system reliability remains better than the 
less reliable release (normally the old release) but is now worse than the reliability 
of the better release (normally the new release). This observation, true with respect 
to all types of responses - correct and incorrect – may be due to the specific way 
the correlation between the releases has been parameterised (Table 4). A more 
detailed study with a wider variety of values and different combinations of the 
conditional probabilities will provide further details about the interplay between 
the properties of the individual releases and of the chosen architecture for managed 
upgrade. 
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4 For the second set of simulation runs (Table 6) under the assumption that the 
responses of the releases are independent, the system reliability is better than the 
reliability of both releases. This observation is good news – fault-tolerance works. 
However, the result does not seem particularly useful because the assumption of 
independence is implausible: after all the two releases are likely to be very similar 
(significant portion of the code will be reused in the newer release). Software faults 
present in the older release and not fixed in the newer release will lead to identical 
failures.  

The obtained results provide indications of the potential usefulness of the architecture 
and of its limitation. Through extensive simulation one can identify the range of 
possibilities which can be encountered in practice. The particular parameters of a real 
life-system, e.g. which set of conditional probabilities describes best the concrete 
system at hand, of course, is unknowable. However, the simulation results may help 
in shaping the ‘prior’ for a Bayesian assessment of the chosen architecture for a 
managed upgrade, as described in section 5.1 above.  

6   Implementation 

6.1   Test Harness 

A test harness is under development for experimenting with the architecture for a 
managed upgrade of a third-party WS deployed as a composite WS (Fig. 4). It 
allows the requests to the WS to be forwarded to the deployed releases of the WS 
transparently for the consumers of the WS. When responses from the releases are 
collected, the test harness adjudicates them and returns a response to the respective 
consumer.  

The test harness monitors the responses, using the calculated confidence in their 
dependability and adjusts the adjudication accordingly. The consumers of the WS 
will be offered a set of operations for changing the configuration of the test harness 
according to their preferences: 

• users can add new or remove some of the old releases of the WS (add or remove 
URI to the WSDL description of the WS releases) 

• users can specify the operational modes of the composite WS (serial or 
concurrent execution of the deployed releases) 

• users can explicitly specify the adjudication mechanism they would like applied 
to their own requests to the WS (e.g. majority voter or other plans) 

• the user can read back the confidence associated with each of the deployed 
releases of the WS and calculated by the harness for different dependability 
attributes (e.g. confidence in correctness, confidence in availability, etc.).  

The test harness is being developed in Java using IBM WebSphere SDK for Web 
Services10 (WSDK). Currently under development is the visual environment for the 
managed upgrade of own and third-party WS, for which the Eclipse IDE11 will be 
extended with a specialised plug-in, also under development. 
                                                           
10 http://www-106.ibm.com/developerworks/webservices/wsdk/ 
11 www.eclipse.org 
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6.2   ‘Publishing’ the Confidence in Dependability of Web Services  

In this section we discuss some practical ways of ‘publishing’ the confidence (or 
indeed any other dependability related measure) using the adopted standards for 
WSs. The confidence is a probability and can be accurately represented by a 
floating point number. To illustrate the idea of publishing the confidence let us 
consider a contrived example of WS with the following fragment of its WSDL 
description: 

<types> 
  <s:schema … > 
    <s:element name=”Operation1Request”> 
      <s:complexType> 
        <s:sequence> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”param1” type=”s:int”> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”param2” type=”s:string”> 
        </s:sequence> 
      </s:complexType> 
    </s:element> 
    <s:element name=”Operation1Response”> 
      <s:complexType> 
        <s:sequence> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”Op1Result” type=”s:string”> 
        </s:sequence> 
      </s:complexType> 
    </s:element> 
  … 
</types> 

In other words, the WS interface publishes an operation ”operation1” which requires 
two parameters when invoked, ”param1” of type int and ”param2” of type string, and 
returns a result ”Op1Result” of type string.12 Now assume that the WS provider 
wishes to ‘publish’ the calculated confidence in the correctness of ”operation1”.  

There are two ways of doing it: 

− The response to a consumer invoking ”operation1” can be changed as follows:  

    <s:element name=”Operation1Response”> 
      <s:complexType> 
        <s:sequence> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”Op1Result” type=”s:string”> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”Op1Conf” type=”s:double”> 
        </s:sequence> 
      </s:complexType> 
    </s:element> 

                                                           
12 For the sake of brevity the fragments of the WSDL description related to messages, parts and 

the service are not shown. 
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− A new operation is defined which takes as a parameter the name of an operation 
(for which the consumer seeks confidence) and returns the confidence in the 
quality of the operation: 

<s:element name=”OperationConfRequest”> 
      <s:complexType> 
        <s:sequence> 

          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”operation” type=”s:string”> 
        </s:sequence> 
      </s:complexType> 
    </s:element> 
    <s:element name=”OperationConfResponse”> 
      <s:complexType> 
        <s:sequence> 
          <s:element minOccurs=”0” maxOccurs=”1”  
             name=”Op1Conf” type=”s:double”> 
        </s:sequence> 
      </s:complexType> 
    </s:element> 

The advantage of the first implementation is that the confidence is associated with 
every execution of ”operation1”. The obvious disadvantage is that the new WSDL 
description is not backward compatible with the old one, which is not acceptable for 
the existing WS but may be OK for newly deployed services.  

The advantage of the second solution is that the new WSDL is backward 
compatible with the old WSDL. The disadvantage is that the confidence will have 
to be extracted in a separate invocation of a different operation published by the 
service (“OperationConf” in the example above), which may lead to complications.  

Finally, a third option exists, which combines the advantages of both solutions 
given above. It consists of defining a new operation, e.g. ”operation1Conf”, in which 
the response is extended by a number providing the confidence in the correctness of 
the operation. This approach allows the ‘confidence conscious’ consumers to switch 
to using ”operation1Conf”, while it does not break the existing client applications 
which can continue to use ”operation1”, i.e. backward compatibility is achieved. 

The confidence will have to be updated when necessary (e.g. by the service 
provider). The clients will be able to get this information directly from the UDDI 
archive. Both the clients and the provider will be able to keep this up to date. This 
will, for example, allow the clients to collect and publicise information about the 
confidence in the service, which in many situations is the most appropriate way of 
collecting information about confidence as only the clients know exactly if the 
service provided is correct. However, an architectural solution in which the WSDL 
description of a WS is extended with additional information reflecting confidence in 
this service, as was shown above, is more static. 

Another two solutions are possible. The first one, which uses protocol handlers 
on the service and client sides to transparently add/remove additional information 
describing confidence to/from each XML message sent between the WS and clients, 
is more structured and transparent. The protocol handlers should be able to 
understand the additional information in the same way on both sides. This 
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architectural solution completely separates the application functionality from 
dealing with the confidence-related issues and ensures compatibility in that when 
there is no handler on the client side it keeps functioning. 

The Web Service architecture allows us to develop another solution, which 
consists of a dedicated trusted confidence service functioning as a mediator for all 
messages sent to and from the WS. This mediator can monitor all messages and 
express the confidence in a convenient way; an example of such an intermediary is 
given in section 4.1 (Fig. 4). The advantage of this solution is a complete separation 
of confidence from the client and service functionality. Moreover, it may be 
beneficial to use such mediators as trusted-third parties in online negotiations 
between clients and services. A disadvantage of this solution, clearly, is that the 
operational ‘evidence’ about how good the WS is will be generated by the traffic 
produced by the consumers connected to the intermediary. In case  significant 
traffic bypasses the intermediary, i.e. many consumers interact directly with the 
WS, the confidence reported by the intermediary may be out of date. 

7   Discussion and Conclusions 

7.1   Related Work  

Paper [15] discusses an architectural framework that allows a WS to be distributed 
into a number of nodes. The specific focus is on supporting uninterrupted service 
when a service migrates from one node to another. This approach cannot be directly 
used for WS upgrading when we want to make use of natural redundancy and 
diversity existing in the system with old and new releases and when we want to make 
decisions by measuring confidence in the old and new releases of an WS. Moreover, 
our solution guarantees uninterrupted service. The approach proposed in [15] does not 
explicitly work with any dependability-related characteristics of the WS (such as 
confidence). 

The Hercules framework [16] relies on the same idea [3] of ensuring reliability of 
upgrading by employing old and new releases. But the main focus of this work is on 
formal specification of specific subdomains on which different releases of a 
component work correctly. Our approach uses confidence in service as the main 
characteristics used to reasoning about its dependability. Moreover, our technique is 
oriented towards the Web Service architecture with a special emphasis on service 
specification description and using service registries to publicize services. 

7.2   Outstanding Issues 

Due to space limitations we could not address several practical aspects of 
implementing the proposed managed upgrade. A few are discussed in this section, 
while others will be covered in our future work. 

One of the reasons for introducing the managed upgrade is the lack of 
notification of consumers when an WS is upgraded, which may be useful in the 
context of the managed upgrade, e.g. if the managed upgrade is deployed by 
consumers. Here we explicitly discuss various ways for implementing such 
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notification. It could be used to initiate the managed upgrade from the old to the 
new release. There are several degrees of notification and various ways of 
implementing it. One possibility is to use the existing registry mechanism and 
extend the WSDL description of a WS by adding a reference to a new release of a 
WS; this would allow a consumer to detect this with both releases staying 
operational. Another possibility is to use a WS notification service13 as a separate 
mechanism to inform all the consumers of a WS about a new release. A similar 
approach would be to explicitly notify subscribers (consumers) using some form of 
“callback” function to consumers of a WS.  

Another problem with the proposed approach to using the confidence in the 
dependability of the releases is defining a plausible ‘prior’ about the dependability 
of the new release. A related issue, which affects the accuracy of the confidence in 
the dependability of the releases and the effectiveness of the managed upgrade, is 
the perfection of the ‘oracles’ (adjudicators) of the responses from the releases. We 
touched upon these problems in section 5.1 and provided some initial assessment of 
the impact of imperfect detection on the predicted confidence. However, further 
extensive studies are needed, e.g. via simulation, to assess how severe the problem 
of imperfect detection is. More importantly, such studies may allow for measures to 
be found which, if put in place, e.g. implemented in the middleware for the 
managed upgrade, will reduce the problem to an acceptable level. 

7.3   Conclusion 

We have addressed various aspects of a dependable on-line upgrade of a WS. We 
concentrated on the managed upgrade in which two releases of the service can be 
deployed and discussed the implications of using a standard fault-tolerant 
architecture in which the releases are used as ‘independent’ channels. We argued 
that the confidence in dependability can be calculated and used to make a decision 
when to switch the consumers of the WS from the old to the new release: when the 
confidence in the dependability of the new release becomes ‘sufficiently’ high. 
Through simulation we confirmed that the managed upgrade can deliver some 
improvement compared with the situations when either of the releases is used.  

Finally, we discussed the advantages and disadvantages of various alternative 
ways of deploying the managed upgrade: i) by the consumers of the service, ii) by 
the provider or iii) by an independent broker.  

Acknowledgements 

This work is partially supported by the Royal Society grant (RS 16114) and by the 
UK Engineering and Physical Sciences Research council (EPSRC) (DOTS Project). 
A. Romanovsky is partially supported by IST RODIN project (IST 511599). 

 

                                                           
13 http://www-106.ibm.com/developerworks/webservices/library/specification/ws-notification/ 



 Dependable Composite Web Services with Components Upgraded Online 121 

References 

1. W3C Working Group, Web Services Architecture. 2004 
. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ 

2. Romanovsky, A. and I. Smith. Dependable On-line Upgrading of Distributed Systems 
COMPSAC'2002. 2002. Oxford. p. 975-976. 

3. Randell, B., System Structure for Software Fault Tolerance. IEEE Transactions on 
Software Engineering, 1975. SE-1(2): p. 220-232. 

4. Ferguson, D.F., T. Storey, et al., Secure, Reliable, Transacted Web Services: Architecture 
and Composition. 2003, Microsoft and IBM. 

5. Tartanoglu, F., V. Issarny, et al., Dependability in the Web Service Architecture, in 
Architecting Depndable Systems. 2003, Springer-Verlag. p. 89-108. 

6. Avizienis, A., J.-C. Laprie, et al., Basic Concepts and Taxonomy of Dependable and 
Secure Computing. IEEE Transactions on Dependable and Secure Computing, 2004. 1(1):  
p. 11-33. 

7. AmperPoint, Managing Exceptions in Web Services Environment. 2003. 
http://www.eaiindustry.org/docs/member%20docs/amberpoint/AmberPoint_Managing_Ex
ceptions.pdf 

8. Chandra, S., Chen, P. M. Whither Generic Recovery from Application Faults? A Fault 
Study using Open-Source Software International Conference on Dependable Systems and 
Networks (DSN'2000). 2000, June. NY, USA. p. 97-106. 

9. Deswarte, Y., K. Kanoun and J.-C. Laprie. Diversity against Accidental and Deliberate 
Faults Computer Security, Dependability and Assurance: From Needs to Solutions. 1998. 
York, England and Washington, D.C., USA: IEEE Computer Society Press. 

10. Kharchenko, V., P. Popov and A. Romanovsky. On Dependability of Composite Web 
Services with Components Upgraded Online. In Supplemental Volume Workshop on 
Architecting Dependable Systems (WADS-DSN'2004). 2004. Florence, Italy. p. 287-291. 

11. Box, G.E.P. and G.C. Tiao, Bayesian Inference in Statistical Analysis. 1973: Addison-
Wesley Inc. 588. 

12. Littlewood, B. and D. Wright, Some conservative stopping rules for the operational testing 
of safety-critical software. IEEE Transactions on Software Engineering, 1997. 23(11): 
p. 673-683. 

13. Littlewood, B., P. Popov and L. Strigini, Assessing the Reliability of Diverse Fault-
Tolerant Software-Based Systems. Safety Science, 2002. 40: p. 781-796. 

14. Cukier, M., D. Powell and J. Arlat, Coverage Estimation Methods for Stratified Fault-
Injection. IEEE Transactions on Computers, 1999. 48(7): p. 707-723. 

15. Alwagait, E. and S. Ghandeharizadeh. DeW: A Dependable Web Services Framework 
14th International Workshop on Research Issues on Data Engineering: Web Services for 
E-Commerce and E-Government Applications (RIDE'04). 2004. Boston, Massachusetts. 
p. 111-118. 

16. Cook, J.E. and J.A. Dage. Highly Reliable Upgrading of Components The 21st 
International Conference on Software Engineering (ICSE 1999). 1999. p. 203-212. 



R. de Lemos et al. (Eds.): Architecting Dependable Systems III, LNCS 3549, pp. 122 – 147, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Adaptable Analysis of Dependable System 
Architectures Through Monitoring 

Marcio S. Dias1,2 and Debra J. Richardson1 

1 Department of Informatics, Donald Bren School of Information and Computer Science, 
University of California at Irvine, Irvine, CA, 92697, USA 

{mdias,djr}@ics.uci.edu 
2 Department of Computer Science, e-Science Research Institute, University of Durham, 

Durham, DH1 3LE, UK 
{marcio.dias@dur.ac.uk} 

Abstract. Every day, our society becomes more dependent on complex 
software systems with high availability requirements, such as those present in 
telecommunications, air traffic control, power plants and distribution lines, 
among others. In order to facilitate the task of maintaining and evolving such 
systems, dynamic software architecture infrastructures have recently been in the 
research agenda. However, complexity and dynamic evolution of dependable 
systems bring some challenges for verification. Some of these challenges are 
associated to modifications in the set of properties being verified and also in the 
types of analysis being performed during system operation. In this work, we 
present a multiple specification and architectural-based approach for software 
monitoring that allows the adaptation of analysis tasks in order to properly 
handle the challenges mentioned above. 

1   Introduction 

Every day, our society becomes more dependent on complex software systems with 
high availability requirements. These systems are present in many different businesses 
and operations, such as telecommunication, power plants and distribution lines, air 
traffic control, global markets, and financial institutes. Some of these systems run on 
distributed environments and heterogeneous (hardware and software) platforms, and 
need to be online 24/7. Sometimes, these systems are the result of integrating 
independent subsystems, where different technologies and processes might have been 
applied during their development. All these factors contribute to the complexity of 
such systems. 

In addition to the inherent complexity of dependable systems, and in order to 
attend the demands of a fast pace society, many of these systems suffer from rushed 
development processes or rely on legacy systems, which were not initially developed 
to attend current demands. In this scenario, activities of maintenance and evolution 
become imperative and a hard task to accomplish, given that they have to be 
performed over systems that cannot have their services interrupted. 

A critical challenge faced during maintenance and evolution of dependable systems 
is to verify, measure, and ensure their quality. The high availability requirement of 
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such systems demands maintenance and evolution being performed at runtime. The 
dynamic evolution on such systems imposes some problems for system analysis. For 
example, dynamic changes can bring the system to global states that would be 
unreachable if those changes were performed statically (e.g., dynamic changes may 
not guarantee new parts of the system to be aware of the history of events that 
occurred previously to that change); and, properties of interest for analysis and 
verification may have to be redefined (and some new properties to be defined) in 
order to reflect the changes in the system configuration [ 5]. 

Moreover, since maintenance and evolution of dependable systems may raise new 
conditions and properties for analysis and verification, such analysis should be able to 
dynamically and accordingly adapt to changes, and the verification should be 
performed over heterogeneous properties. Heterogeneous properties are properties 
described for different analysis purposes, and multiple specification languages may be 
required for their description. 
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Fig. 1. Modification in the dynamic analysis due to high-availability requirement, system 
complexity and dynamic evolution 

Therefore, we need to identify and understand how analysis of heterogeneous 
properties can be performed over dependable and evolvable systems, considering that 
properties of interest may also change during system execution. In order to deal with 
this problem, dynamic analysis techniques are required (such as those supported by 
monitoring systems [ 4, 11]), but these techniques should be prepared for: (1) handling 
heterogeneous properties (multiple specification languages for their description) and; 
(2) dynamic adaptation of the analysis (see Fig. 1.). Although applying only dynamic 
analysis and monitoring on dependable systems may not be sufficient to avoid 
failures, it can identify conditions, alert and even take some actions before failures 
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happen, similarly to the airplane collision avoidance analysis performed in air traffic 
control systems. 

2   Example 

In the real world, elevator systems are structurally static, have some limited level of 
complexity, and are not commonly reconfigured at runtime. However, through 
simulation, we can show how dynamic recofiguration can increase the complexity of 
such systems.. We decided to use a simulator for the elevator application domain in 
our example because of three simple reasons: (1) everyone is familiar with elevator 
systems, and can easily understand the commonalities and variabilities on this 
application domain; (2) these systems contain stateful components and timing 
requirements, what give them a level of complexity that is interesting for verification 
purposes, and; (3) we can easily identify the components of these systems and 
describe their structural architectures, on which elements the dynamic system 
reconfiguration will take place. 

After understanding the reason for such example of dependable system and 
dynamic system reconfiguration, it is also worth to mention that we are making no 
claims that the design decisions taken here are neither the best nor a good solution for 
this application domain. Other design decisions could have been taken, and some of 
the problems we discuss here might not occur on these other solutions. However, this 
design is purposely taken to demonstrate common problems we face when analyzing 
dynamic system reconfiguration. 

2.1   Elevator Application Domain 

For the elevator domain, we can find some commonalities and variabilities we can 
explore here. As common components to all elevator systems, we have:  

• ElevatorADT. This component maintains the information about the elevator 
car state, such as: motion and direction. In addition to state information, the 
ElevatorADT (Elevator Abstract Data Type) keeps a list of all the calls it 
needs to attend. If a call is not in its list, the elevator will not attend it. 

• ElevatorPanel: This component represents the internal panel of an elevator 
car. After entering the elevator, the passenger can request calls through it, 
and see the current floor. 

• BuildingPanel: This component represents all the elevator call panels of the 
building. Through this component, users in different floors can request a call 
to the elevator system, indicating the desired direction. 

A basic architecture for the elevator system is presented in Fig. 2 using only these 
components and following the C2 architectural style [ 10, 14]. In C2 style, components 
are connected through directed broadcast buses, which broadcast incoming event 
requests (from the bottom) to all the components above the bus, and incoming 
notifications (from the top) to all the components connected below the bus.  In Fig. 3, 
some different variations of the basic architecture are presented, with modified 
architecture and additional components, such as Scheduler and Call Generator. Three 
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possible points for variation are shown: V1 represents addition or removal of new 
elevators components (ADT+Panel+Bus); V2 represents addition of a Scheduler 
component and an extra bus between BuildingPanel component and the main bus; and 
V3 represents the addition of a Call-Generator component for simulation. 

ElevatorPanel1

ElevatorADT1

ElevatorPanel2

ElevatorADT2

BuildingPanel

ElevatorPanel1

ElevatorADT1

ElevatorPanel2

ElevatorADT2

BuildingPanel  

Fig. 2. Basic architecture configuration for elevator system commonalities. Black rectangles 
represent broadcast buses that interconnect system components (C2 style). 
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Fig. 3. Variations from the basic architecture configuration for the elevator system 

2.2   Challenges for Dynamic Analysis in the Example 

Dynamic software analysis, or more specifically software monitoring, can be applied 
to different purposes [ 11]. As the system evolves dynamically, different and new 
analysis may be needed during the system operation. 

Challenge #1: As different purposes for dynamic analysis may be required during 
system evolution, different methods to specify the properties for verification are 
necessary. 

In the example, let's consider three different purposes for verification: (1) behavior 
conformance verification, (2) functional correctness verification, and (3) performance 
evaluation. In order to be able to perform such different analysis, there is a need to 
handle different (heterogeneous) property descriptions: 

• Behavioral conformance verification. The properties to be analyzed are related to 
the behavior of the elements of the system. Component level verification would 
require a description of the expected behavior of the components, and this could 
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be provided as finite state machines or statecharts, for example. In other words, we 
may have the property for behavior conformance of the ElevatorADT component 
described using finite state machines.  On the other hand, a system level 
verification would require a behavioral description of the system, such as activity 
or sequence diagrams, for example. 

• Functional correctness verification. In this case, the properties to be analyzed are 
related to the functionality provided by the system. The description of system 
functionality could be done with specification methods such as, for example: use-
case, activity, sequence diagrams; event-based regular expressions; etc. An 
example of a property for functional correctness verification could be "no elevator 
should pass by a floor with a pending call, in the same direction, without stopping 
to attend it". This property could be described as a regular expression. 

• Performance verification. Timing, throughput and other measurements are 
described in properties for performance evaluation. In general, specification 
languages used in this context are either based on classical temporal logics or 
linear temporal logics. 

Therefore, in this context, it is required from the dynamic analysis the ability to 
allow multiple, different and possibly new specification languages. 

Challenge #2: As the system evolves, some previously defined (described) properties 
may either become obsolete or require modifications in their description, and new 
properties may become necessary for verification. 

To illustrate the problems mentioned above, consider that we have the following set 
of properties being verified before the dynamic evolution of the elevator system.  

P1: No elevator should be idle while there still is an unattended call in the building. 
P2: An elevator should not miss a call when moving in the same direction and 

passing at the same floor of the call. 
P3: The time between a call being placed and one elevator being assigned to attend 

that call should be less than 1 sec. 
P4: The time between a call being placed and one elevator attending the call should 

be less than 45s. 

After suffering dynamic modifications according to variation V2 (the addition of a 
Scheduler component), some of these properties may become inadequate or need 
redefinition. For example, by adding a Scheduler component: 

P1 becomes inadequate because the scheduler will assign a call to one elevator, 
while the other ones may be in idle state. 

P2 may become inadequate depending on the scheduling policy. 
P3 may either become inadequate or need to be redefined, depending on the 

scheduling policy and how it was described before. 
P4 would still be valid, unless the addition of the Scheduler component had the 

purpose to reduce the waiting time (a requirement change). 

Therefore, it is also required from the dynamic analysis the ability to support 
dynamic definition (and modification) of the properties of interest for verification. 
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3   MonArch Approach 

In this section, we describe our approach, discussing: 
• the concepts supporting our approach,  
• the difference of our approach to current approaches,  
• how analysis are described in our approach, and 
• the MonArch supporting tools. 

3.1   Conceptual Basis 

In order to address the problems of necessary modifications of dynamic analysis in 
order to verify dependable systems (described before), our approach relies on four 
main points: 

A. Configurable Monitoring Systems 
Many monitors are developed with the intention to be generic for multiple purposes, 
but they fail because they are not adaptable, for instance, to situations or purposes that 
would require new specification languages for property description. Therefore, 
instead of proposing a generic monitor system, the approach encourages configurable 
monitor systems, with increased reuse of common monitoring services (see Fig. 4) 
and the support for development and adaptation of specialized services. More details 
can be found in [ 6] about each monitoring services presented in Fig. 4 (as well as 
information and example of how to develop new monitoring services for MonArch.) 
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Fig. 4. Examples of common monitoring services 

B. Service-Oriented Monitoring Systems 
Instead of making the services provided by the monitor based on a (global) 
specification language (language oriented monitors), the approach uses the "service" 
as the element of composition. In other words, a specification language does not limit 
the types of services a monitor can offer. A monitor can be composed from a 
collection of services, including not only common services, but also extensible and 
"pluggable" services. 
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We have identified not only what are the common services of monitor systems, but 
we define a classification to organize them. The analysis of a monitor system can be 
broken into these smaller services, and these services can be associated to 
independent and different specification languages. For example, while one abstracter 
service may be associated to regular expression specifications, another abstracter may 
be associated to DAG, binary tree, or another specification method. The combination 
of different services will define the monitor. 

C. Software-Architecture Based Monitors 
Instead of developing a monitor system by first designing an algorithm to process the 
services, the approach is based on an appropriate architectural style where dynamic 
(re)configuration and evolution are feasible. Figures 5 and 6 present examples of 
different monitors and their configuration based on the monitoring service oriented 
components. 
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Fig. 5. Example of a very simple monitor system with four service-oriented components 

Collector

Intrusion
Detector

Abstracter

Filter

Arch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

App 1

Collector Filter JDBCSenderApp 2

Arch 1

JDBCReceiver

TraceViewer

ReportViewer

Behavior
Checker

Arch 2

Sender

ReceiverCollector

Intrusion
Detector

Abstracter

Filter

Arch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

Collector

Intrusion
Detector

Abstracter

Filter

Arch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

App 1

Collector Filter JDBCSenderApp 2

Arch 1App 1

Collector Filter JDBCSenderApp 2

Arch 1

JDBCReceiver

TraceViewer

ReportViewer

Behavior
Checker

Arch 2

JDBCReceiver

TraceViewer

ReportViewer

Behavior
Checker

Arch 2

Sender

Receiver

SenderSender

ReceiverReceiver

 

Fig. 6. Example of distributed monitoring performed by three different monitors. 

D. Configuration Before and During Operation 
Provide the ability to modify analysis (and other monitor services) given the changes 
on the properties of interest and system evolution, instead of having the entire 
configuration performed before system operation. By configuration we mean not only 
configuration in the set of properties being verified (which would represent 
modification in the description of properties being analyzed), but also modification on 
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the set of analyses being performed (new purposes for verification may require new 
analysis techniques to be included during runtime in the set of dynamic analyses 
being performed.) 

3.2 Comparing the MonArch Approach to Current Approaches 

These following points characterize the main differences of our approach in relation 
to current monitoring system approaches (see Fig. 7): 
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Fig. 7. Differences between how current monitors are developed and our approach to develop 
them 

• Purpose and Properties. Similarly, our approach starts with the set of services 
the monitor should support. The set of services is related with the purpose for 
monitor, and also to what types of properties should be analyzed. However, 
instead of supporting only the initial set of services, our approach allows any 
other service to be added after the monitor is ready and even in operation. 

• Property Specification. Instead of defining a specification language that will be 
used to specify the properties for analysis and describe all the services the 
monitor should provide, in our approach each service (Si) can be based on an 
independent specification language (Li). In addition, different services can share 
specification languages to describe the properties they are going to analyses 
(useful when different types of analysis can be performed over a single model, 
for example).  

• Monitor Execution. Instead of defining a global algorithm and the architecture 
that will process and perform analysis accordingly to a single specification 
language, in our approach, the configuration of the service-oriented components 
and the topology of the architecture define a distributed processing algorithm for 
the monitor system. 
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• Implementation. Instead of having a single monitor as the result of the 
development, in our approach, a monitor consists simply of a composition of 
services, composition that can be derived from the architecture of the monitor, 
and the configuration for these services described in possibly different 
specification languages. Therefore, our approach facilitates the creation of 
multiple monitors by modifying the set of service components or simply the 
topology of the monitor architecture. 

The characteristics of our approach address the initial problem of verifying systems 
that are dependable, complex, highly available and dynamically reconfigurable. 

3.3   Describing the Dynamic Analysis in MonArch Approach 

In our approach, the description of the monitor is divided into two parts: (A) monitor 
architecture and (B) monitor services. Once described the monitor architecture and 
the configuration of the monitor services, we need to define the links between the 
monitor architecture and the services described for a specific target application. These 
links are maintained in a project. 

A. Specifying the Monitor Architecture 
The architecture description for the monitor system contains basically the same type 
of information supported by ADLs (architecture description languages): the set of 
components (and types), the connectors and the configuration of the architecture of 
the monitor system. 

The monitor architecture defines what set of services the monitor offer, and 
contains the structure of the monitor system, and it can be independent of the target 
application that will be observed by the monitor. In other words, the monitor 
architecture contains the information about what analysis and services will be 
provided, independently of what events and definitions that will be used for 
processing. 

B. Specifying the Monitoring Services 
In order to monitor the target application, it is necessary to describe the types of 
events that occur in this application, as well as how these events can be composed 
into others, what type of events or information should be presented, etc. The 
description of the services is specific to the target application. And although a service 
description is going to be associated to a component of the monitor system, it can be 
defined independently of the monitor system and its architecture. 

Although specification of monitor architecture and the monitoring services are kept 
independently, they are interconnected (linked) in a project. Once they are linked and 
the monitor is in operation, the architecture of the monitor can change (architectural 
evolution, by replacing, adding or removing service-oriented components or 
connectors), as well as the description of the properties for each service (modification 
in the specification of the properties being analyzed by each service-oriented 
component). 
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By existing different specifications for the monitor architecture and for the monitor 
services, it is possible to reuse the monitor (purpose) with different applications, as 
well as reuse the application description for multiple monitor purposes (Fig. 8) 
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Fig. 8. Monitor Architecture and Monitor Services being described separatedly. While the 
monitor architecture specification dictates the services available, the monitor services 
specification contains the information regarding the target application being monitored. One 
monitor architecture can be used for multiple target applications, and an application service 
description can be used by multiple monitors. 
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Fig. 9. Projects associate monitor architecture description with service description 

C. Project 
To instantiate or initialize a monitor system, it is necessary to link service descriptions 
to monitor components of one architecture. In our approach, these links are defined in 
a project. The project associates a monitor architecture to the service specification for 
one application, defining what service description is associated to each service (or 
component) of the monitor architecture (see Fig. 9). Defining these links, the monitor 
can be instantiated and executed. 
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Once a monitor is in operation for a specific project, changes in the architecture or 
in the service description may be reflected or not in the initial descriptions. For 
example, if during the monitor operation, a modification in the service description is 
required or simply performed, the monitor operator may decide to reflect those 
modifications back to the initial specification or not. 

 

Fig. 10. MonArch Architecture Editor 

 

Fig. 11. MonArch Service Specification Editor 

3.4   Supporting Tools 

While the monitor architecture description is supported by the MonArch Architecture 
Editor (see Fig. 10), the description of the services for an application is supported by 
MonArch Specification Editor (see Fig. 11). This prototype tool allows the 
specification of all services associated to an application. Figure 11 shows the tool 
being used for the description of services used to monitor the elevator system. After 
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defining what is the type of the service (in Spec Type Class), we can describe the 
service (edit the specification) either though a GUI Form or directly in XML (see Fig. 
12). All services for an application are stored in a single database. The MonArch 
Architecture Editor is also responsible for supporting the description of projects, 
associating components in the architecture with service description. 

 

Fig. 12. Editing Filter Service – XML 

4   Experiments 

We have performed three case studies to verify the adaptability, extensibility and 
applicability of our approach. 

4.1   Elevator System 

This system is a simulator for the elevator system of a commercial building. On the 
contrary of a physical building, it is simple to perform structural modifications to this 
system. The elevator system was built using the C2 architecture framework (original 
framework version) [ 14], which easily allows structural modifications of the system 
(even on-the-fly modifications).  

4.1.1   Experiment Overview 
Some details of the elevator system, including its components and variabilities of the 
system, were discussed before. In this experiment, we have a monitor system 
connected to the elevator system, performing some analyses over the elevator system 
execution (we discuss what analyses are performed and how the monitor is connected 
to the elevator system ahead). 

We start the experiment with one configuration of the elevator system, and during 
its execution, the configuration of the elevator system is (dynamically) modified. As 
mentioned before, these modifications bring some challenges for analysis and, in 
order to continue to properly analyze the elevator system, modifications in the 
monitor system are required and performed. We discuss how modifications happen in 
the monitor system, in order to show how our approach deals with those challenges. 
In this experiment, the purpose for monitoring the elevator system is to perform 
behavioral analysis.  
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4.1.2   Initial Configuration 
In the initial configuration for this experiment, the elevator system has a simple 
structure (ev1), with just one elevator and no scheduler. The initial monitor 
configuration (mv1) has the following services: an event collector component (C1); a 
simple filter component (F1) that filters out irrelevant events for the analysis; a 
regular-expression pattern matching identifier component (Behavior1) that identifies 
when event (behavioral) patterns happen during the system execution; and a textual 
viewer (View) that presents the information about behavioral patterns identified by 
the analysis. 

In the beginning of the experiment, we start to monitor for the following 
properties: 

• Property 1: Elevator should not be idle while there still is an unattended call 
in the building. 

• Property 2: An elevator should not miss a call (when moving in the same 
direction and passing by the same floor of the call). 

C1 : InvocationCollector F1 : SimpleFilter

Behavior1 : REPatternMatcher View : 
TraceViewer

BuildingPanel

ElevatorPanel1

ElevatorADT1

BuildingPanel

ElevatorPanel1

ElevatorADT1

Monitor (mv1)Elevator (ev1)

 

Fig. 13. Elevator Case Study – Initial Configuration (Configuration 1) 

In order to analyze these two properties, the services present in the monitoring system 
(mv1) should be properly specified. While the services provided by 
InvocationCollector (C1) and TraceView (View) components require no special 
service specification (in relation to the analysis), we discuss below the specification 
for the other two services: SimpleFilter (F1) and REPatternMatcher (Behavior1). 

4.1.2.1. Service Specification for SimpleFilter (F1) 
This is a simple filter service, which requires in its specification basically a list of 
events collected from the elevator system that should not be filtered out (a “detecting” 
filter, as opposed to a “blocking” filter) in order to verify properties #1 and #2. 

4.1.2.2. Service Specification for RegularExpressionPatternMatcher (Behavior1) 
In this service, the specification should describe the properties to be analyzed. In the 
monitoring system, the identification of a property would be defined as a new event. 
Therefore, whenever one property is identified by the 
RegularExpressionPatternMatcher component, a new event is generated and passed to 
other services. 
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Below, we present how properties #1 and #2 were described in our experiment: 

• Property 1: Elevator should not be idle while there still is an unattended call in 
the building. (Regular Expression for this property, where  represents a sequence 
operand and variables represent constraints over event attributes) 

ElevatorADT_BOT_OUT_CallAdded (F:floor;D:direction)    
NOT ElevatorADT_BOT_OUT_CallAttended(F:floor;D:direction)   
ElevatorADT_BOT_OUT_State (IDLE:status) 

• Property 2: An elevator should not miss a call (when moving in the same 
direction and passing by the same floor of the call). (Regular Expression for this 
property) 

ElevatorADT_BOT_OUT_CallAdded (F:floor;D:direction)  
ElevatorADT_BOT_OUT_State (MOVING:status;F:floor;D:direction)  
NOT ElevatorADT_BOT_OUT_CallAttended(F:floor;D:direction)   
ElevatorADT_BOT_OUT_State(MOVING:status;F2:floor;D:direction)  

4.1.3   Modification of the Analysis Purpose 
In this experiment, the first type of modifications we consider is related with the 
purpose of analysis. Previously, we were analyzing behavioral properties as expressed 
in regular expressions. At this moment, we also want to perform analysis over 
temporal properties. For example, we want to include the analysis of a temporal 
property such as: 

• Property 3: Every call should be attended in less than one minute. 

The service provided by component Behavior1 (RegularExpressionPatternMatcher 
service) couldn’t verify such property. In order to analyze property 3, we need to 
modify the services provided by the monitor. We discuss two options for modifying 
the monitor, although other options may be possible as well. 

Option 1. Extending RegularExpressionPatternMatcher Service 
This option consists in extending the RegularExpressionPatternMatcher into a new 
service that can handle timing properties. In this case, our extended service 
(RETimeoutPatternMatcher) can handle properties as described for service 
REPatternMatcher with an additional (and optional) timeout setting so that, if a 
property cannot be identified in a specific time interval, a timeout event is fired. 
Basically, the new service performs a similar analysis of the previous service, but if a 
partial pattern matching is not completed in the allocated time, a timeout event is 
fired. Otherwise, it simply identifies the occurrence of a pattern. 

Option 2. Adding Extra Service - TemporalAnalyzer 
In this option, the analysis of property 3 is not performed completely by one service, 
but the combination of different services. While the Behavior1 component perform 
the identification of event patterns, the additional service (TemporalAnalyzer) 
performs temporal assessments over the events it receives. The analysis of property 3 
would be decomposed into these 2 services: Behavior1 identifies when a call is 
attended, and Temporal component verifies if the call was attended in less than 1 
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minute (see). Filter F2 is added to block events of type “Property3_Identified_Event” 
to bypass the temporal analysis. 

C1 : InvocationCollector F1 : SimpleFilter

Behavior1 : REPatternMatcher View : 
TraceViewer

BuildingPanel

ElevatorPanel1

ElevatorADT1

BuildingPanel

ElevatorPanel1

ElevatorADT1

Monitor (mv2)

Behavior2 : RETimeoutPatternMatcher

Elevator (ev1)

 

Fig. 14. Modifying analysis purpose by extending service (option 1) 

 

C1 : InvocationCollector F1 : SimpleFilter

Behavior1 : REPatternMatcher

View : 
TraceViewer
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ElevatorADT1

Monitor (mv2)

Temporal : TemporalAnalyzer

Elevator (ev1)

F2 : SimpleFilter

 

Fig. 15. Modifying analysis purpose by adding new service (option 2) 

4.1.4   Modifications in the Elevator System 
The second type of modification in the experiment happens in the elevator system. 
With the reconfiguration of the elevator system, modifications in the analysis are 
required as well. We considered the following modifications in the elevator system 
and their implications to the analysis: (1) addition of an extra elevator car, and (2) 
addition of a scheduler component, which will decide which elevator car should 
attend a call placed through the building panel component (see Fig. 16). 

BuildingPanel

ElevatorPanel1

ElevatorADT1

BuildingPanel

ElevatorPanel1

ElevatorADT1

ElevatorPanel1

ElevatorADT1

Scheduler

ElevatorPanel2

ElevatorADT2

BuildingPanel

ElevatorPanel1

ElevatorADT1

Scheduler

ElevatorPanel2

ElevatorADT2

BuildingPanel  

Fig. 16. Reconfiguration of the Elevator System 

Revisiting Property #1 
Before the reconfiguration, property #1 was “elevator should not be idle while there 
still is an unattended call in the building”. After the reconfiguration, with two elevator 
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cars, this property would be better expressed as “an elevator should not be idle while 
there still is an unattended call that was scheduled to it.”  

The modification performed in the service specification of Behavior1 component 
(to reflect the change in the description of property #1) was to verify if a previously 
scheduled call has been attended by (or rescheduled to) another elevator car before the 
initial scheduled car attend it. 

The new property was described as (with the modifications in bold, where the 
symbol ‘||’ represents an OR operand): 

ElevatorADT_BOT_OUT_CallAdded(F:floor;D:direction)  
NOT (  
  ElevatorADT_BOT_OUT_CallRemoved(F:floor;D:direction)||  
  ElevatorADT_BOT_OUT_CallAttended(F:floor;D:direction)   
)   
ElevatorADT_BOT_OUT_State(IDLE:status) 

Revisiting Property #2 
Before the reconfiguration, the property was “An elevator should not miss a call 
(when moving in the same direction and passing by the same floor of the call).” 
Similarly to the previous property, this property needs to be adapted to the new 
situation. Now, one elevator car may miss a call if it was scheduled to another 
elevator. The modifications in the service description for this new property are similar 
to property #1. The modification to the previous regular expression for this property 
are presented below in highlight: 

ElevatorADT_BOT_OUT_CallAdded (F:floor;D:direction)  
NOT ElevatorADT_BOT_OUT_CallRemoved (F:floor;D:direction)   
ElevatorADT_BOT_OUT_State (MOVING:status; F:floor; D:direction )  
NOT ElevatorADT_BOT_OUT_CallAttended (F:floor;D:direction)   
ElevatorADT_BOT_OUT_State (MOVING:status; F2:floor; D: direction )  

4.1.5   Experiment Description 
The instrumentation of the elevator system happened in the C2 connectors of the 
system architecture. Therefore, all C2 messages flowing in the architecture are 
collected and sent to the monitor. In this experiment, it is in the monitor where events 
not relevant for the analyses performed are filtered out (by the Filter service). If we 
have modification on the set of properties being analyzed, or we need additional 
services, we can adjust the filter service configuration without the need of modifying 
the instrumentation of the elevator system. 

4.2   Air Traffic Control System 

Air Traffic Control systems involve high level of complexity, have high availability 
requirements, and their reliability is crucial for safety and security purposes. Despite 
all the current technology and advances employed in such systems, we decided to 
explore such domain for our experiment in face of the events after the September 11th 
terrorist attacks in the year of 2001. Although simply monitoring the air traffic cannot 
avoid incidents such as those, it can alert of suspicious maneuvers before the final 
outcome. In addition, the ability to dynamically adapt the services performed by the 
monitor would facilitate the modifications to the air traffic control system and 
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possibly reduce the number of days (from 3) the commercial air traffic had to be shut 
down in the United States. 

We used an Air Traffic Control [ 1] simulator (ATCJ) in this experiment. The 
simulator allows the user to assume the duties of an air traffic controller without 
endangering the lives of millions of travelers each year.  The user is responsible for 
directing the flight of jets and prop planes into and out of the flight arena and airports. 
The speed (update time) and frequency of the planes depend on the difficulty of the 
arena. This simulator was written in java, with the source code available (an open 
source project).  

The controller needs to transmit commands to airplanes in order to: (1) launch 
planes at airports; (2) land planes at airports (by instructing them to go to altitude zero 
when exactly over the airport); and (3) maneuver planes out of exit points. There are 
many different types of commands the controller can transmit to an airplane, such as 
change altitude, change direction, turn it towards a beacon, and delay with circle 
trajectory, among others. However, in this simulator, the controller cannot modify the 
speed of the planes. Each plane has a destination, either an airport or an exit point. 
Planes can run out of fuel, miss their target destination, and collide. Collision is 
defined as adjacency in any of the three dimensions. The simulator displays the 
current airplanes in the flight arena, their direction and positioning (in the radar), their 
destination, and their current maneuvers in action (commands). Besides the indication 
of low fuel in airplanes, no other alert or indication of dangerous situations are 
displayed to the controller. 

We decided to use the ATC in this experiment because it presents a very special 
domain, where specific analyses are required. Since the simulator performs no 
analysis over the traffic itself, there are many different types of analyses that are 
relevant to the controller. Some examples of the types of analysis are: collision 
detection and avoidance analysis; route-destination analysis; statistics on performance 
and throughput analysis; identification of all planes that may transit through the route 
of one specific plane (useful to modify the route of planes in a hijack situation, for 
example); among others. 

The simulator was instrumented in order to have the following types of event 
collected by the monitoring system: 

• AirplaneStatus Event: contains the current status information about one 
airplane, including its ID, positioning, direction, and destination. In every 
update of the radar, one of such event is collected for each plane in the arena 
and sent to the monitor. 

• ArenaElementStatus Event: contains the status information about one arena 
element, basically including its type (airport, beacon, entry/exit point), ID, 
positioning, and some extra information depending on the element type. 
Periodically, but not necessarily at every radar update, one of such event is 
collected for each arena element and sent to the monitor. In this ATC 
simulator, the arena cannot be modified dynamically. However, it is useful to 
have the arena status being updated periodically because, in a real case 
scenario, the arena may really change (for instance, by having an airport closed 
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due to difficult weather condition), and current monitor services would be able 
to handle modifications in the arena. 

In order to collect these events in the ATC system, two classes were instrumented – 
the Plane class (for “AirplaneStatus” event) and the component ATCData (for 
“ArenaElementStatus” events). No further instrumentation was required in the other 
components of the ATCJ system. 

We started this experiment by monitoring the ATC system and performing 
collision detection and avoidance analysis. 

4.2.1   Collision Detection Analysis 
The initial purpose for our monitor is to perform collision detection and avoidance 
analysis. For this analysis, a CollisionDetection service was developed, where only 
the positioning of the airplanes is relevant to determine a collision situation. This 
service keeps a record of airplanes positions, which is updated by incoming 
AirplaneStatus events. If during a certain period an AirplaneStatus event for one 
recorded airplane is not collected (for example, after two or three radar updates), the 
detection service simply removes the airplane record, since the airplane may have 
exited the flight arena or landed in an airport. It is important to mention that an 
airplane position may disappear in the radar due to another reason besides exiting or 
landing and, in such cases, the disappearance should be alerted to the controller, 
however this kind of analysis is out of the scope of the Collision Detection service – 
this analysis would be better performed by another monitoring service. 

In order to assist in collision avoidance, this service allows different levels of 
collision safety: from level 5 (green), with no alert of collision, down to level 1 (red), 
where the collision happens (an actual collision is imminent and possibly 
unavoidable), with different levels of near-misses in between. Standards for defining 
these levels may change along the time or be different among various flight arenas.  

There were different possible ways to provide the Collision Detection service for 
this experiment. One option is to use (reusing or developing) a generic analysis 
service that is based on a formal specification language, and describe the collision 
detection and avoidance property in such specification language. With exactly the 
purpose of formally specifying the requirements for TCAS II (Traffic Collision 
Avoidance System), Leveson et al. [ 8] have proposed RSML (Requirement State 
Machine Language) a requirement specification language based on finite state 
machines and statecharts, simple and readable but with a solid formal and 
mathematical semantics.  

A second option is to use (developing) a domain specific analysis service, with its 
initial configuration described in a specification language restricted to the domain. 
The disadvantage of this option in relation with the first option is that this analysis 
service will only be useful to monitor systems related to Air Traffic Control domain, 
and perhaps other domains that involve elements in motion in the 3D space. In 
addition, the domain brings restrictions to the service and the description language, 
what can reduce the flexibility in modifying the properties analyzed in the service.  
The advantage of this second option is that description languages specific to a 
domain, although more restricted, can be simpler and easier to read, write and 



140 M.S. Dias and D.J. Richardson 

understand than generic specification languages. Besides, the domain specific analysis 
services can be optimized for better performance in a more straightforward way. 

Instead of taking the approach of the first option, we decided to take the second 
option in this experiment. Taking the first option would be similar to the approach 
taken in our first case study. In the first case study, we used a generic analysis service 
which configuration for analysis was provided by a generic specification language. 
There, the specification language was based on regular expression semantics; in this 
case study, the specification language would be based on the semantics of state 
machines (similarly to the statechart monitoring capability performed in Argus-I 
[ 15]). Besides, by deciding on the second option, we want to demonstrate the 
versatility of the MonArch approach in developing and providing domain specific 
analyses services as well, in addition to generic analysis services. Since this service is 
domain specific, the semantics of its specification language is based the concepts of 
distance between airplanes, difference of altitude, alert sign levels, velocity, direction, 
among others. The configuration of the monitor system is presented in Fig. 17. 

C1 : InvocationCollector F1 : SimpleFilter

Collision : CollisionDetector View : 
TraceViewer

ATCDataATC

MonitorATCJ

ATCUI_impl

...
 

Fig. 17. ATC System and Monitor Configuration 

4.2.3   Other Analyses 
After configuring the CollisionDetection service, we added some other analysis 
services to the monitor: Route-Destination analysis and Departure notification.  

C1 : InvocationCollector F1 : SimpleFilter

Collision : CollisionDetector View : 
TraceViewer

ATCDataATC

Monitor

Route : RouteDestinationChecker

ATCJ

ATCUI_impl

...

WaitingDeparture : SimpleFilter

View2 : 
TraceViewer

 

Fig. 18. Other Analysis Services Added to the Monitor 

The purpose of the Route-Destination analysis service is to identify those airplanes 
that are not in the correct route to their destination. This service should consider the 
flight navigation plan, the commands the airplane received from the controller and all 
reroutes and delays that may naturally occur. For this experiment, we have a 
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simplified and domain specific service, where navigation plans, reroutes and delays 
were not considered. The service verifies if the airplane is going towards (or reducing 
the distance to) its destination. 

The Departure notification service basically identifies those planes that are ready 
for departure but waiting for the controller authorization. Whenever a new plane is 
waiting for departure, the ATC simulator simply shows the plane in the radar, but no 
further explicit notification for the controller, and keeping track of all airplanes 
waiting for departure without an auxiliary mechanism is not reliable and is an 
unnecessary overhead to the controller. For this service, in this experiment, we used 
the SimpleFilter service for departure notification, identifying those airplanes that 
have altitude zero and do not have permission to take off. This filter detects 
AirplaneStatus events that characterize the mentioned situation, and passes these 
events to a new visualization service, in order to provide a more organized display to 
the controller. 

4.3   MonArch Version of GEM 

GEM [ 9] is a powerful and generic monitoring system that can be used to process and 
disseminate events for many different applications, and it allows some level of 
dynamic configuration of the monitor. The dynamic configuration it supports is 
dynamic upload of rules (described in GEM specification language) and dynamic 
distribution and dissemination of processes in a network environment. 

We decided GEM would make a good example to mainly evaluate if the MonArch 
approach supports the development of existent monitors, and how difficult this task 
would be. In this case study, we studied some of the key features present in GEM, and 
show how these features are supported in a MonArch version of GEM. 

Following the common approach for development of monitoring systems (see Fig. 
7), GEM is based on a specification language that describes the processing or analysis 
to be performed by the monitor. In order to identify the main key features of GEM, 
we briefly describe some of GEM main features below (details and further discussion 
of this experiment are presented in [ 6]). 

4.3.1   GEM Main Features 
The main set of features provided by GEM (in its services) are the following: 

• Event Attributes. Every event has some event independent attributes (id, source 
id, timestamp) and dependent attributes (attributes specific to the event type). 

• Event Correlation and Expressions. GEM performs event correlation based on 
extended regular expression notation, with guards and timing features. 

• Guards. Boolean expressions involving event attributes that work as constraints 
in the event correlation process. 

• Timed Events (at, every). It allows events being triggered based on timing 
constraints. For example, an event may be generated at a specific time or based 
on a frequency rate. 

• Detection Window. Basically, detection window defines the time how long an 
event should be used for correlation. 
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• Notify, Forward and Trigger. When an event is triggered, GEM tries to fire as 
many correlation rules as possible with that definition (i.e., a triggered event can 
be used to trigger other events in the correlation). On the other hand, notify and 
forward commands sends events to external applications, and these events are not 
used for further processing in the correlation mechanism. 

4.3.2   MonArch Version of GEM 
Since GEM basically collects events, processes them, and disseminates the results to 
other applications or other GEM monitors, no presentation service is provided. 
Therefore, our MonArch version of GEM has no visualization services in its 
composition. It has a Collector service, which receive events from the external 
environment, and also a Sender service, which disseminates the externally visible 
events to the external environment (external applications). Most services present in 
our MonArch version of GEM were reused from our common set of services, 
including SimpleFilter (a Filter component) and RETimedPatternMatcher (an 
Abstractor monitor component, which allows configurable detection window). A 
generic Timed Event Generator component was used in this experiment to provide the 
same features present in GEM (with commands at and every). In addition, a new 
service (the GEM Event Generator) was built in order to reproduce the commands 
notify, forward and trigger (while notify and forward commands send events to an 
external application – through the sender service, triggered events are sent back for 
processing. 
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Fig. 19. MonArch Version of GEM 

5   Related Work 

Monitoring has been around since the early 1960s with the advent of debuggers, and 
today they monitor distributed applications and are often themselves distributed. 
There are many monitor systems currently available for different purposes [ 4]. 
Monitoring has matured in its ability to give users freedom in defining what is to be 
monitored. Monitor systems are usually classified [ 6][ 11] into traditional monitoring 
(with focus on post-mortem analysis and presentation - e.g. Historical DB[ 13]) and 
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online monitoring (focus on analysis and actions at execution time - e.g. EBBA[ 3], 
EDEM[ 7], Argus [ 15], STAT [ 16]). The MonArch framework allows the construction 
of monitor systems that can be in either one of those categories, and also on both at 
the same time - that is, the MonArch framework and approach allow monitors to 
perform both online and post-mortem analyses. 

Although most existent monitors are target specific and do not allow users to 
describe what should be monitored, many monitors were developed to allow the 
user to describe and configure it through a specification language with a well 
defined semantics, as detailed in [ 6]. The monitors that allow the user to describe 
what should be monitored usually permit the description in only one of the 
following semantics: extended regular expressions (EBBA[ 3], EDEM[ 7], GEM[ 9]), 
boolean expression trees (HiFi [ 2]), relational algebra (Historical DB[ 13]), state 
machine model (Argus [ 15], STAT [ 16]), among others. A more detailed 
comparison and discussion about those and other monitoring systems is available at 
[ 4]. Although most monitors that allow user description require the description to 
be defined before the monitoring is in execution, some allow dynamic loading or 
configuration of such descriptions, such as STAT [ 16]. Similarly, in the MonArch 
approach, services can be configured not only before execution but also at runtime 
(although the current implementation only allows this dynamic modification 
through direct user interaction). In addition, MonArch also allows the configuration 
of the set of analysis (or other monitoring) services being performed by the monitor, 
and is not limited to only one specification language. 

Although analysis is not the main goal of event-based middleware and publish-
subscribe infrastructures, they involve event correlation and its specification, which 
plays an important role in monitoring service specification as well. Current research 
on these areas include dynamic configuration (loading) of specification for event 
correlation during subscription requests (e.g., Yancces [ 12]). However, to the best 
of our knowledge, current event-based middleware technology is also limited to 
specific languages and semantics to describe how event correlation will be 
performed. 

6   Conclusions 

Our society becomes every day more dependent on complex software systems with 
high availability requirements, and many businesses and operations depend on 
reliable and uninterruptible performance of their systems. Attending to the demands 
of a fast paced society, maintenance and evolution of such complex and dependable 
systems are required, but a difficult task to perform, even harder when considering 
that the services provided by those systems cannot be interrupted. 

Software engineers face a critical challenge during maintenance and evolution of 
dependable systems that is to verify, measure, and ensure their quality. The high 
availability requirement of such systems demands that maintenance and evolution 
be performed at runtime. The dynamic evolution of such systems imposes some 
problems for system verification, and the kinds of analysis may need to be 
redefined to properly verify the modification in the system. 
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In addition, even when dependable systems are simply in operation (that is, not 
passing through maintenance or evolution), their inherent complexity associated 
with new or unforeseen life situations may require modification in the kinds of 
analysis necessary to properly verify them. 

Given the fundamental role complex and dependable systems play in our society, 
research concerning verification of such system is very important. This importance 
becomes even stronger when dealing with maintenance and evolution of such 
systems, when analysis should be performed: (1) before the changes are put in place 
in the system (to avoid incorrect system behavior); and also (2) after these 
modifications happen, to check their actual effect over the system behavior. The 
focus of this work is in the second point. 

6.1   Future Work 

In this work, we focused on the analysis (or processing) services supported by 
monitors. Further exploration in the other types of monitoring services is envisioned, 
such as services for collection, persistence, distribution, visualization, and actions. 
Research on services for visualization and actions are very important and interesting, 
given the importance of properly displaying the results of analysis, and that services 
(or agents) responsible for taking actions can play a major role in the monitoring 
system.  

One limitation of the current implementation framework is that, although the 
MonArch approach allows adaptation to the set of analyses and services performed, 
there is no service (MonArch component) currently available that is able to perform 
these adaptations automatically, and the human intervention is still required for 
such dynamic adaptations. And agents are exactly the services that can give more 
control and power to any monitoring system, allowing it to take actions over itself, 
over the system under analysis, and also over the environment around it. One of the 
points to be considered when providing these agent services is the specification of 
how automatic changes should be applied dynamically to the monitor, and again 
different agents can provide different mechanisms for this self-adaptation of the 
monitor system. 

The MonArch approach involves the distribution not only of the services, but 
also the distribution of the overall analysis description. Different services are 
described separately with the goal to allow dynamic changes in the set of services, 
and also in the hope to simplify the analysis description within different aspects 
present in monitoring systems. However, more study is required to assess how more 
manageable the analysis specification become for the software engineer to describe 
the analyses. Further research is also necessary on dynamic and automatic 
mechanisms for instrumentation of the target application. 

Future work also involves making better support tools available, using different 
technologies for the framework, and other supporting mechanisms for service-
oriented architectures. Comparing reliability and performance of our approach with 
different mechanisms and heterogeneous platforms are important to understand and 
estimate the interference caused by the monitor, and use this information to make 
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the services more aware of their intrusion and allowing them to perform the needed 
adjustments. 

Although we focused on analysis services, these analyses are performed once the 
changes occur in the target system or in the purpose for analysis. For system 
evolution, it is also important to explore different types of analysis that need to be 
performed before the changes take place in the system. The combination of analyses 
performed before the changes and after the changes is promising and very important 
for software maintenance and evolution, and to explore this combination is another 
goal of our future work. 

6.2   Contributions 

The contributions of this work are: 

• A conceptual framework for classification of the basic services in dynamic 
analysis. We developed a conceptual framework presented in [ 4] providing an 
organized basis for: (1) comparing and distinguishing types of services present in 
a monitoring system; (2) separating different concerns of monitor services; and 
(3) orienting the development of other services. 

• An approach that allows the composition of the analysis based on service-
oriented components and the reconfiguration of the monitor system services 
during system operation. Different types of analysis may be necessary on 
highly available and complex systems, and by composing monitors from service-
oriented components allows the reconfiguration of the overall analysis, even 
during the system execution. 

• An approach that allows different specification languages being used to 
describe the properties of interest for analysis. The architectural style and the 
service oriented components allow different analysis services to rely on 
descriptions written in the same or in different specification languages. 

• An approach that allows and encourages the reuse of services (and 
specification languages) between different monitoring systems. The 
separation of concerns present in the conceptual framework allows generic and 
not-so-generic analysis services to be reused in different monitors. The approach 
encourages the existence of a library of analysis services that one can use 
whenever needed, and use only those services really required, in order to reduce 
analysis processing and interference on the system execution. 

• A prototype implementation of the approach. The prototype includes 
framework and supporting tools for flexibly building and evolving dynamic 
monitor architectures.  

Another important contribution of this work was to highlight that configuration or 
preparation of a monitor system may happen not only before it is in operation (see 
Fig. 20). Indeed, when dealing with high available and dependent systems, constant 
preparation of the monitor system may be required, and reconfiguration mechanisms 
should be provided, to modify not only the description of the properties being 
analyzed, but also the set of analyses performed. 
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Fig. 20. Monitor configuration performed during system execution 
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Abstract. Our paper introduces a runtime verification framework for
concurrent monitoring of applications specified by UML statecharts. The
approach offers a considerable degree of granularity by (i) enabling the
modeler to focus on specific key dependability criteria by defining tempo-
ral logic formulae over a behavioral model that is available even in early
phases of the development and (ii) by supporting the verification of the
final implementation against the fully elaborated UML statechart model.
The paper presents an extension of the propositional linear temporal
logic that fits to the advanced constructs of UML statecharts and an
advanced watchdog scheme for concurrent supervision of program exe-
cution based on the statechart specification.

Keywords: Runtime verification, temporal logic, UML statecharts.

1 Introduction

As the dependence of the society on computer-based systems is increasing the
correctness of software artifacts is a primary concern. It is widely recognized
that software model checking is a complicated task and in case of large systems
often infeasible. Traditional testing scales well to systems of any complexity and
is a commonly used technique, however the fault coverage of testing is hard to
measure and it is difficult to reason about the number of remaining faults after
the testing phase.

Runtime verification is a combination of formal methods and testing: exe-
cutable assertions are derived from formal software models and are evaluated in
appropriate phases of the execution. This approach avoids several drawbacks of
ad-hoc testing and the state space explosion phenomenon of model checking.

Our paper presents a runtime verification framework (Fig. 1) for UML state-
chart realizations and outlines the design and implementation of the key compo-
nents. The approach offers a considerable degree of granularity by simultaneously
enabling (i) the definition of dependability criteria even in early phases of the
development based on temporal logic formulae and (ii) using the fully elaborated
behavioral model as reference information for monitoring the implementation:
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Fig. 1. Runtime verification framework

– The key dependability criteria against software systems are defined during
the requirement analysis or in the early modeling phases (temporal require-
ments, fail-safe operation etc.) while only preliminary behavioral models are
available. Since these models specify the most important states and tran-
sitions only, they can not be used directly for checking the implementation
however it would be beneficial to formally define some correctness require-
ments at the very beginning of the development. Our approach supports the
definition of temporal requirements even in the early development phases
by providing a temporal logic language for UML statecharts (SC-LTL) and a
corresponding runtime verifier component (SC-LTL module in Fig. 1). Sect. 2
discusses how to map the key statechart features to Kripke-structures (the
underlying mathematical model of temporal logic languages), Sect. 3 defines
the SC-LTL language and outlines an efficient method for implementing the
verifier module.

– During the subsequent model refinement steps the developers prepare the
fully elaborated behavioral model of the system that is implemented following
a pattern (template) based systematic approach by manual programming
or automatic source code generation. The final behavioral model can be
directly used for runtime detection of deviations from the behavior spec-
ified by the statechart. Our approach is capable of using the elaborated
behavioral specification for runtime verification: UML statecharts are trans-
formed to Extended Hierarchical Automata (EHA) that is used as a reference
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model for a statechart-level (EHA-level) runtime verifier component. Since
the operation of this component is similar to a watchdog processor (WD)
that detects deviations from the control flow graph of the application it is
called EWD module in Fig. 1. This component is capable of detecting be-
havioral anomalies and operational errors throughout the entire life cycle of
the observed object: proper initialization (entering the states belonging to
the initial configuration), event processing (selecting transitions to be fired)
and the firing of transitions (leaving source states, performing the action
associated to the transition and entering the target states) according to
the UML semantics. Sect. 2 outlines the syntax and semantics of Extended
Hierarchical Automata, Sect. 4 specifies the operation of the runtime behav-
ior monitor by protocol state machines, Sect. 5 outlines a straightforward
way for implementing the necessary instrumentation and Sect. 6 presents
a discussion about assessing the error detection capabilities of the EWD
module.

It is important to highlight that during runtime verification we are searching
for errors in the implementation (programming and refinement errors) that is
considered to be a black box realization of the abstract behavioral model. This
way a runtime verifier is significantly different from a model checker:

– The runtime verifier is a passive observer: while a model checker can simu-
late all possible execution paths for revealing all behavioral errors that may
be exposed by the system, a runtime verifier can only observe the behavior ac-
tually exposed by the system. Note that in the user’s point of view behavioral
anomalies that potentially reside within the system but are never triggered
are of no importance, like buggy code fragments that are never executed.

– The runtime verifier can not conclude about the overall correctness of the
system since it does not see all possible execution paths (even if it happens
to investigate all paths during a sufficiently long execution can not realize
this fact because of the black box nature of the approach). Obviously hav-
ing detected an error by the runtime verifier indicates that the system is
incorrect.

– Because of being a passive observer the runtime verifier can not directly
evaluate atomic propositions in specific states: it has to obtain the runtime
information from the implementation. This can be an interface for polling
the necessary information or a communication protocol through which the
implementation pushes the runtime information to the observer.

– Model checkers are usually applied for proving the correctness of protocols or
state machines that theoretically run for infinitely long time by performing
cycles in the state space. During runtime verification we are investigating
real software that is started once and after a time it is shut down – this is
the reason for having defined SC-LTL above finite traces.

– The runtime verifier is practically an embedded component in the system, its
CPU requirements and memory consumption should be as low as possible.
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Since the temporal logic requirements can be formalized even in a very early
stage of the development while the fully elaborated behavioral model is only
available before the implementation phase, the errors (besides the operational
ones) targeted by the methods can be classified this way (Tab. 1.):

– Requirements formalized by temporal logic in the early stages of the develop-
ment express the correctness criteria in a relatively non-technical form, not
influenced by the further model refinement decisions enabling this way the
detection of errors introduced in the model refinement process (e.g., violation
of the original behavioral specification by introducing illegal transitions).

– The fully elaborated behavioral model that is available only at late stages
of the development can be used for detecting errors introduced during the
implementation step (misunderstood specification, coding bugs etc.).

Table 1. Key characteristics of runtime verification modules

SC-LTL module EWD module
Development phase Requirement analysis (early) Before implementation (late)
Reference information Temporal logic (SC-LTL) Elaborated statechart (EHA)
Targeted faults Invalid model refinement, Implementation faults,

misunderstood specification operational faults

Detecting temporal and behavioral errors is a key facility in dependable sys-
tems but from the point of view of the fault-tolerant behavior it is only the first
step for initiating the recovery process (error confinement, damage assessment,
fail-over mechanisms etc.). Our approach enables the developers to apply the
advanced modeling constructs and high expressive power of UML statecharts
not only for modeling the behavior during normal operation but even in excep-
tional situations by introducing the concept of exception events for indicating
the anomalies detected by the runtime verification facilities. Exception events are
ordinary UML statechart events that represent the detection of an exceptional
situation that requires some special handling.

Exception events can be used for representing programming language level
exceptions and specifying the corresponding exception handling enabling this
way the initiation of a system-level recovery mechanisms in case of component
errors that would be hard to implement when relying only on the facilities pro-
vided by the programming language. By introducing the error detection signals
as UML statechart events the behavioral model becomes closed even with re-
spect to the reaction to abnormal situations: the entire behavior can be specified
by the statecharts of the application enabling this way the modeling, model
checking and code generation based on the abstract visual language. Sect. 7
outlines our research related to handling exceptional situations by exception
events.

The final section of the paper (Sect. 8) concludes the discussion and outlines
the directions of our future research.
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2 Formal Models

The runtime verification framework proposed in this paper uses multiple be-
havior specification formalisms. This section discusses the key features of UML
statecharts (visual behavior specification formalism of the Unified Modeling Lan-
guage), Extended Hierarchical Automata (alternative syntax of UML statecharts)
and introduces a direct Kripke-structure representation of statecharts.

2.1 UML Statecharts

Abstract Syntax. The State Machine package of UML specifies a set of con-
cepts to be used for modeling discrete behavior through finite state-transition
systems. The syntax is precisely defined by the metamodel (i.e., a class dia-
gram describing the model elements) in the standard. Besides the fundamental
building elements UML statecharts provide several sophisticated constructs.

States model situations during which some invariant condition holds. Op-
tional entry and exit actions can be associated to them to be performed whenever
the state is entered or exited.

Transitions are directed relationships between a source and a target state. An
optional action can be associated to them to be performed when the transition
fires. Transitions can be guarded by Boolean expressions that are evaluated when
an event instance is dispatched by the state machine. If the guard is true at that
time, the transition is enabled, otherwise it is disabled.

States can be refined into substates resulting in a state hierarchy. The decom-
position can be simple refinement (only one of the substates is active at the same
time) or orthogonal division where all the substates (called regions) are active
at the same time. Join and fork vertices can be used to represent transitions
originating from or ending in states in different orthogonal regions. Transitions
are allowed to cross hierarchy levels.

Operational Semantics. The operational semantics is expressed informally in
the standard using the terms of a hypothetical machine. The key components
of this machine are: (i) an event queue that holds incoming events until they
are dispatched, (ii) a dispatcher mechanism that selects and de-queues event
instances from the event queue for processing and (iii) an event processor that
processes dispatched events according to the semantics of statecharts. In the
following a short overview is given about the operation.

The semantics of event processing is based on the run-to-completion (RTC)
assumption i.e., an event can only be dequeued and dispatched if the process-
ing of the previous one is fully completed. After receiving an event a maximal
set of enabled transitions is selected that are not in conflict with each other
and there is no enabled transition outside the set with higher priority than a
transition in the set. The transitions selected this way fire in an unspecified
order.

A transition is enabled if all of its source states are active, the event satisfies its
trigger and its guard is enabled. Two transitions are in conflict if the intersection
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of the states they exit is non-empty. Priority of transition t1 is higher than the
priority of t2 if the source state of t1 is a directly or transitively nested substate of
the source state of t2. The exact sequence of actions to be performed when taking
a transition is specified by the standard with respect to the state refinement
hierarchy: first the exit actions of all states left by the transition are executed
starting with the deepest one in the hierarchy, next the action associated to
the transition is performed finally the entry actions of states entered by the
transition are executed starting with the highest one in the hierarchy.

Events. The UML event concept (Event metaclass) is defined as a “type of an
observable occurrence”. The base Event metaclass is refined to four metaclasses
(Fig. 2) indicating that a Boolean expression became true (ChangeEvent), expira-
tion of a deadline (TimeEvent), request for invoking an operation synchronously
(CallEvent) and reception of an asynchronous signal (SignalEvent) respectively.
The SignalEvent metaclass is associated to the Signal metaclass that represents
an asynchronous stimulus received by an object. The Signal metaclass is a gen-
eralizable element. Using this feature UML events can be considered as general-
izable classes that can be organized into a refinement hierarchy.

CallEvent TimeEventSignal ChangeEventSignalEvent

Event

Classifier

GeneralizableElement Generalizationgeneralization
specialization

Exception

Fig. 2. The UML event concept

For example the left part of Fig. 3 presents the statechart of a traffic light
controller as drawn in an early phase of the development, while the class dia-
gram on the right side depicts the event refinement hierarchy. (Since transitions
in UML have no names, unique numeric identifiers were assigned and indicated
in parentheses before the trigger event in the figure for easier discussion.) The
traffic light can be in the normal operational state (On) or switched off (Off).
Transitions 1 and 6 between the two top states are triggered by the Switch
event. While being switched on the light can be red, red and yellow, green and
yellow (states Red, RedYellow, Green and Yellow respectively). Transitions be-
tween these states (2, 3, 4, 5) are triggered by the corresponding time events
(e.g., the time for switching from green to yellow is signalled by the TimeG
event). The traffic light implements a basic fail-silent behavior: an internal elec-
tronic component detects the failures of the light bulbs and indicates this sit-
uation by sending the LightErr event. This event triggers transition 7 between
Off and On (the associated action may switch off all the lights in the cross-
ing, etc.).
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Fig. 3. Preliminary statechart of a traffic light

The root of the event hierarchy is the abstract LightEvt class. Two further
abstract event classes are derived from it: TimeEvt (ancestor of timing-related
events) and ExcEvt (abstraction of events signalling exceptional situations). The
Switch event is directly derived from the LightEvt base class, the LightErr event
is derived from ExcEvt. TimeR, TimeRY etc. are derived from TimeEvt.

2.2 Extended Hierarchical Automata

Abstract Syntax. Since the operational semantics of UML statecharts is ex-
pressed mainly informally in the standard, it is not ideal for model-checking pur-
poses [1], [2]. Model-checking approaches published in the literature are based
on behavioral description formalisms that have formally specified operational se-
mantics. Probably the one that is closest to the advanced features of statecharts
is the Extended Hierarchical Automaton (EHA) notation [1], [2].

An EHA consists of sequential automata. A sequential automaton contains
simple (non-composite) states and transitions. EHA states represent simple and
composite states of the UML model. States can be refined to any number of
sequential automata. All automata refining a state are running concurrently
(i.e. a concurrent composite state of a UML statechart is modeled by an EHA
state refined to several automata representing one region each).

Source and target states of an EHA transition are always in the same au-
tomaton. UML transitions connecting states at different hierarchy levels are
represented by transitions with special guards and labels containing the original
source and target states called source restriction and target determination re-
spectively. At most one state in an automaton can be labeled as the initial state
of the automaton building up the initial state configuration of the EHA.

Operational Semantics. The operational semantics (transition selection) is
expressed by a Kripke-structure in [2]. The EHA semantics is proven to resemble
the informal semantics of UML statecharts, which allows using EHA as the
representation of statecharts in formal analysis and code generation frameworks.

For example the EHA equivalent of the traffic light’s statechart (Fig. 3) is
shown in Fig. 4. The top sequential automaton contains two states: On and Off.
The On state is refined to a sequential automaton with the states representing
the substates of the On composite state in the original statechart.
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Fig. 4. EHA equivalent of the traffic light

2.3 Kripke-Structure

Kripke-structures can be considered as very simple state machines. States can
not be refined, the transitions are expressed by a transition relation and labels
are assigned to the states. Kripke-structures are used at two places in our verifi-
cation framework for formally specifying behavioral models: both the underlying
operational semantics of Extended Hierarchical Automata and the SC-LTL tem-
poral logic language are also defined with the terms of a Kripke-structure.

This subsection introduces a formal notation for referring to UML state-
chart features to be used in atomic propositions of the SC-LTL language (states,
events, transitions and actions), discusses how to collect information describing
all possible RTC steps of the statechart and defines how to represent the oper-
ation of the UML statechart with the states and labeling of a Kripke-structure.

Note that for the purpose of runtime checking SC-LTL formulae the Kripke-
structure, as defined by the formal operational semantics of the EHA is not
sufficient. Checking the temporal ordering of events, and actions requires to in-
clude run-to-completion steps (labeled by the corresponding events and actions)
in the formal model. Accordingly, the formal model of SC-LTL is obtained by
re-structuring and enhancing the formal model of the EHA. In the following, for
the sake of easy understanding, the formal model of the SC-LTL is presented
directly in terms of the UML statechart instead of using the terms of the EHA.

Formal Notation. Let M be a UML statechart. The states of M (simple and
composite ones) are in the σ set: σ = {σ1, σ2, . . . σm}. The transitions of the
statechart are in the τ set: τ = {τ1, τ2, . . . τn}. The classes of events possibly
received by the statechart are in the ε set: ε = {ε1, ε2, . . . εo}.

The event refinement facility of UML is supported by by the event refinement
relation: ρε ⊆ ε × ε and (εi, εj) ∈ ρε if and only if the event class εj is directly
derived from the event class εi. Let us use the symbol ε∅ ∈ ε as an empty trigger
event to be used in case of transitions without explicit trigger. Furthermore we
introduce the multi-step event refinement relation (ρN

ε ) and the closure of the
refinement (ρ∗ε ). Informally: ρN

ε collects those (εi, εj) pairs where εj is derived
from εi in N steps, ρ∗ε collects those (εi, εj) pairs where εj is derived from εi in
any steps. (Obviously the refinement graph is acyclic.)

ρN
ε =

{ {(εi, εi)|εi ∈ ε} if N = 0
{(εi, εj)|εi, εj ∈ ε ∧ ∃εk ∈ ε : (εi, εk) ∈ ρε ∧ (εk, εj) ∈ ρN−1

ε } if N > 0

ρ∗
ε = {(εk, εj)|∃N : (εk, εj) ∈ ρN

ε }
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The entry and exit actions of states and the actions associated to the transitions
are represented by the αE , αX and αA sets respectively:

– The αE set contains an element for each σi ∈ σ states representing the entry
action of the corresponding state: αE = {αE

σ1
, αE

σ2
, . . . αE

σm
}.

– The αX set contains an element for each σi ∈ σ states representing the exit
action of the corresponding state: αX = {αX

σ1
, αX

σ2
, . . . αX

σm
}.

– The αA set contains an element for each τi ∈ τ transitions representing the
action associated to the corresponding transition: αA = {αA

τ1
, αA

τ2
, . . . αA

τn
}.

For example in case of the traffic light (Fig. 3) the sets of states (σ), transitions
(τ) and events (ε), the state entry actions (αE referenced using the name of
the state in subscript), the event refinement relation (ρε) and the closure of the
refinement (ρ∗ε ) are as follows:

σ = {σOff , σOn, σRed, σRedY ellow, σGreen, σY ellow}
τ = {τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9}
ε = {εLightEvt, εSwitch, εTimeEvt, εExcEvt,

εTimeR, εTimeRY , εTimeG, εTimeY , εLightErr}
αE = {αE

σOff
, αE

σOn
, αE

σRed
, αE

σRedY ellow
, αE

σGreen
, αE

σY ellow
}

ρε = {(εLightEvt, εSwitch), (εLightEvt, εTimeEvt), (εLightEvt, εExcEvt),

(εTimeEvt, εTimeR), (εTimeEvt, εTimeRY ), (εTimeEvt, εTimeG),

(εTimeEvt, εTimeY ), (εExcEvt, εLightErr)}
ρ∗

ε = {(εLightEvt, εLightEvt), (εSwitch, εSwitch), (εTimeEvt, εTimeEvt),

(εExcEvt, εExcEvt), (εTimeR, εTimeR), (εTimeRY , εTimeRY ), (εTimeG, εTimeG),

(εTimeY , εTimeY ), (εLightErr, εLightErr), (εLightEvt, εSwitch),

(εLightEvt, εTimeEvt), (εLightEvt, εExcEvt), (εTimeEvt, εTimeR),

(εTimeEvt, εTimeRY ), (εTimeEvt, εTimeG), (εTimeEvt, εTimeY ),

(εExcEvt, εLightErr), (εLightEvt, εTimeR), (εLightEvt, εTimeRY ),

(εLightEvt, εTimeG), (εLightEvt, εTimeY ), (εLightEvt, εLightErr)}

Configurations and RTC Steps. Let the set C contain all possible config-
urations of the statechart M (C ⊆ 2σ). The special c∅ symbol will be used to
represent the uninitialized state of the statechart (before entering the initial con-
figuration). Let us collect information about all possible run-to-completion steps
of the statechart into data structures of the format:

ri = (csrc, ctrg, εj , {αX
σk1

, αX
σk2

, . . . }, {αA
τl1

, αA
τl2

, . . . }, {αE
σm1

, αE
σm2

, . . . })

where: (i) csrc ∈ C is the source configuration, (ii) ctrg ∈ C is the target configu-
ration, (iii) εj ∈ ε the class of the event that triggered the RTC step, (iv) the set
{αX

σk1
, αX

σk2
, . . . } contains the state exit actions that were performed during the

RTC step, (v) the set {αA
τl1

, αA
τl2

, . . . } contains the actions associated to transi-
tions that were performed in the RTC step and (vi) the set {αE

σm1
, αE

σm2
, . . . }

contains the state entry actions that were performed during the RTC step.
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It is important to highlight that according to the structure and operational
semantics of UML statecharts a specific source and target configuration can be
connected by multiple RTC steps, e.g., in case of the example in Fig. 3 Off can be
reached from any substates of On through the transitions τ6 and τ7 this way the
RTC step that takes the statechart from the {σOn, σRed} configuration to the
{σOff} configuration can be triggered by an event of the class εSwitch (transition
τ6) and by an event of the class εLightErr (transition τ7).

Let the set R contain all the structures as collected above and a special ele-
ment that represents the initialization step during which the statechart reaches
its initial configuration: r∅ = (c∅, cinit, ε∅, ∅, {αA

τl1
, αA

τl2
, . . . , }{αE

σk1
, αE

σk2
, . . . })

where c∅ is the special configuration representing the uninitialized state of the
statechart, cinit is the initial configuration, the ε∅ empty event indicates that
the initial transition is not triggered by any event class, obviously during the
RTC step no exit actions are performed (∅) and the last two sets indicate the
actions associated to the initial transitions and the entry actions of the states in
the initial configuration respectively.

For example the configurations of the traffic light (Fig. 3) are as follows:
C = {{σOff}, {σOn, σRed}, {σOn, σRedY ellow}, {σOn, σGreen}, {σOn, σY ellow}}.
Some examples for the RTC steps to be collected into the R set are: (c∅,
{σOff}, ε∅, ∅, {αA

τ8
}, {αE

σOff
}) (initialization), ({σOff}, {σOn, σRed}, εSwitch,

{αX
σOff

}, {αA
τ1

, αA
τ9

}, {αE
σOn

, αE
σRed

}) (receiving the Switch event in the Off state),
({σOn, σRed}, {σOn, σRedY ellow}, εTimeR, {αX

σRed
}, {αA

τ2
}, {αE

σRedY ellow
}) (switch-

ing to RedYellow from Red), etc.

Definition of the Kripke-structure. Having collected data about RTC steps
the Kripke-structure can be defined by assigning states to RTC steps, specifying
the transition relation according to the possible subsequence of RTC steps and
providing the information related to events, actions etc. by labeling of the states.

Definition 1 (Kripke-structure for representing statecharts). The UML
statechart M can be represented by the Kripke-structure K. K is a tuple K =
(S, T, L) and L is decomposed as L = (LS , LEvt, LX , LA, LE) where:

S is the state set of K. S contains exactly one sr ∈ S state for each r ∈ R
run-to-completion step of M .

T (T ⊆ S × S) is the state transition relation. Since states represent RTC
steps of the statechart, the state transition relation represents the possible subse-
quence amongst RTC steps. It is easy to see that an RTC step ri may be followed
by another RTC step rj if the configuration reached by ri is the source configura-
tion of rj . Let sri and srj (sri , srj ∈ S) represent the ri and rj structures (ri, rj ∈
R where ri = (csrc

i , ctrg
i , ei, α

X
i , αA

i , αE
i ) and rj = (csrc

j , ctrg
j , ej , α

X
j , αA

j , αE
j ):

T = {(sri , srj )|ctrg
i = csrc

j }

LS, LEvt, LX , LA and LE (LS : S → 2σ, LEvt : S → ε, LX : S → 2αX

,
LA : S → 2αA

, LE : S → 2αE

) are the labeling functions. LS indicates the set
of statechart states that are active in the target configuration of the RTC step.
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LEvt specifies the class of the event that triggers the RTC step. LX , LA and LE

specify the state exit actions, actions associated to transitions and state entry
actions that were performed in the RTC step respectively. Let sri ∈ S represent
the ri = (csrc

i , ctrg
i , ei, α

X
i , αA

i , αE
i ) structure (ri ∈ R). The formal definitions of

the labeling functions are as follows:

LS(sri) = {s ∈ σ|s is active in ctrg
i }

LEvt(sri) = ei LX (sri) = αX
i

LA(sri) = αA
i LE(sri) = αE

i

2.4 Application of Formal Models

This subsection has introduced the behavioral description formalisms used in our
approach. The efficient visual notation of UML statecharts can be considered as
the “user interface” of the runtime verification: statecharts are used for describ-
ing the behavior in a UML modeler tool and are automatically transformed [3]
to EHA for runtime verification of the implementation. Various artifacts of stat-
echarts will be used as atomic propositions in the SC-LTL language. The main
contribution of this section, the Kripke-structure defined in the third subsection
establishes the mathematical background of the temporal logic language.

3 Verification of Temporal Requirements

Temporal logic languages have been successfully applied for proving the correct-
ness of communication protocols and finite state-transition systems with respect
to various dependability criteria based on the model-checking of the abstract
behavioral specifications. Several approaches have been published in the litera-
ture [4], [5] [6], [7] or released as commercial software [8] for runtime verification
of temporal requirements based on the instrumentation of the source code etc.
According to our knowledge only a single commercial tool (State Rover from the
Time-Rover company) aims at addressing the runtime verification of UML stat-
echart implementations and unfortunately very few public information is avail-
able about the mathematical background and the operation of this software.
The goal of this section is to introduce a linear temporal logic language for UML
statecharts (SC-LTL) for bridging the gap between the powerful features of the
visual language and the precise mathematical formalism. Defining and checking
dependability criteria on UML statecharts offers the following benefits:

– Dependability criteria are typically defined in an early phase of the develop-
ment when only preliminary behavioral models are available. Our approach
enables the direct definition of requirements above the preliminary model even
if it is further refined during the development: there is no need to map the
requirements to the final implementation reducing this way the possibility of
distorting requirements during the transformation process. This application
also enables the discovery of errors introduced during the refinement process.
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– Our approach bridges the gap between the precise mathematical formalism
and the visual notation of statecharts enabling this way the more straight-
forward application of precise formalism in engineering practice.

The temporal operators used in SC-LTL (next-time and until) are the same
as the ones used in many other temporal logic languages. The expressive power
is extended by the introduction of various atomic proposition classes that re-
fer to advanced UML statechart constructs like the activity of a state in a
configuration, the event triggering a transition and actions performed during
a run-to-completion step. These atomic proposition classes were introduced by
investigating several informally expressed dependability criteria from the field
and mapping their concepts to UML statechart features.

The notion of time in SC-LTL corresponds to the run-to-completion (RTC)
concept of UML statecharts. The finite state-transition model behind the SC-
LTL language is the Kripke-structure defined in Sect. 2. SC-LTL formulae are
evaluated over a finite trace of the Kripke-structure.

Definition 2 (Finite trace). A Π finite trace of a Kripke-structure is a finite
sequence of states: Π = (s0, s1, . . . , sn−1) connected by the state transition re-
lation: ∀0<i<n(si−1, si) ∈ T . The Πi suffix of the trace is obtained from Π by
dropping the first i steps: Πi = (si, si+1, . . . , sn−1)(i < n).

3.1 Syntax and Semantics of SC-LTL

Definition 3 (Syntax of SC-LTL). Below we present an inductive definition
of the syntax of SC-LTL formulae and introduce the notion of a formula φ being
true at the trace suffix Πi denoted by Πi |= φ.

Π |= σi iff σi ∈ LS(s0) (State proposition)
Π |= εi iff (LEvt(s0), εi) ∈ ρ∗

ε (Event proposition)
Π |= αX

i iff αX
i ∈ LX(s0) (Exit-action proposition)

Π |= αA
i iff αA

i ∈ LA(s0) (Associated-action proposition)
Π |= αE

i iff αE
i ∈ LE(s0) (Entry-action proposition)

Π |= ¬e iff Π |= e in not true (Boolean not)
Π |= e1 ∧ e2 iff Π |= e1 and Π |= e2 (Boolean and)
Π |= X e iff n > 1 ∧ Π1 |= e (Temporal next)
Π |= e1Ue2 iff ∃0<i<nΠi |= e2 and (Temporal until)

∀0<j<i : Πj |= e1

Informally: an atomic proposition about a statechart state σi is true if σi is active
in the actual configuration. The name of an event class εi as atomic proposition is
true if the RTC step was triggered by an event of that class or of a refining class.
Propositions about actions indicate that the corresponding entry, associated or
exit action was performed in the RTC step. This information is provided by the
labeling functions. The semantics of the Boolean operators is the same as usually.
The single argument of the next-time operator (X ) is evaluated in the next state
of the trace, while the until operator (U) indicates that the condition expressed
by its second argument should be true some time in the future or even in the
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actual state and until this the condition expressed by the first argument should
hold. Based on the basic operators several shorthand operators are introduced:

Π |= e1 ∨ e2 iff Π |= ¬(¬e1 ∧ ¬e2) (Boolean or)
Π |= e1 → e2 iff Π |= ¬e1 ∨ e2 (Boolean implication)
Π |= � (Boolean true)
Π |= F e iff Π |= �Ue (Temporal finally)
Π |= G e iff Π |= ¬ F ¬e (Temporal globally)

For example the requirement “however should the basic statechart in Fig. 3
be refined during the development process, the traffic light can only be switched
off by the Switch or the LightErr events” can be formalized as:

G(σOn → X (σOn ∨ (σOff ∧ (εSwitch ∨ εLightErr))))

to be read as “it is always true that if the On state is active in the statechart’s
current configuration (the traffic light is switched on) then after the next RTC
step it will be still switched on or it will be switched off but only if the event
that triggered the RTC step was Switch or LightErr”.

3.2 Runtime Evaluation of SC-LTL Formulae

In the previous discussion the semantics of SC-LTL was introduced on the basis
of Kripke-structures by a straightforward extension of the label set assigned to
states of the Kripke-structure. Although the language can be used for defining
dependability criteria for model-checking, our primary goal is its application
for runtime verification. The runtime checking of temporal-logic formulae aims
at detecting situations when a requirement specified by an SC-LTL formula
is violated by the implementation – this can happen even if the model of the
application is perfect e.g., because of a misunderstood specification, an invalid
refinement of the original model during the development process or simply a
programming error. Obviously when the abstract model is faulty the problem
can be revealed by a conventional model checker.

In the framework of our research we have designed and implemented a code
generator that automatically creates the source code of the runtime verifier com-
ponent (SC-LTL module) on the basis of a set of SC-LTL formulae. Since due to
size limitations the exact implementation can not be discussed here: this subsec-
tion introduces the main idea behind the implementation and outlines the data
structures and algorithms applied in the runtime verifier.

Mathematical Background. The key idea in our approach is to re-structure
formulae into a format where the atomic propositions to be evaluated in the
actual state and the ones to be evaluated sometime in the future are clearly
separated. Iteratively applying this re-formalization enables us to build a vir-
tual “logical chain” consisting of “logical blocks” representing the portion of
the verifier logic corresponding to specific states of the system under
verification:
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– The outputs of the logical blocks are the values of arbitrary SC-LTL expres-
sions to be evaluated at the corresponding state.

– The inputs of a logical block are (i) atomic propositions to be evaluated in
the actual state and (ii) sub-expressions to be evaluated in the next step.

– The blocks are connected after each other resulting in a chain of logical
blocks. The outputs of a block are the inputs of the previous one in the chain
(i.e., the sub-expressions to be evaluated in the future – see (ii) above).

– The system should handle the notion of “unknown value” since during the
execution some sub-expressions can only be evaluated at a future step.

The idea of logical blocks is depicted in Fig. 5: In the upper part of the figure the
state traversal of a Kripke-structure is shown while the bottom part indicates
the building of the logical chain by adding a new logical block in each subse-
quent step. The original expression requested by the user to be evaluated was
(a∨b)Uf . This expression is re-formalized as f ∨((a∨b)∧X ((a∨b)Uf)) (see the
explanation below). This way the output of the first logical block is (a ∨ b)Uf
(left interface in Fig. 5) and its inputs are (i) the a, b and f atomic propositions
obtained from the labeling of the actual state of the Kripke-structure (upper
interface) and (ii) the value of the (a ∨ b)Uf expression propagated from the
output of the next logical block (right interface). Because the original expres-
sion simply re-generates itself during the re-formalization, all the logical blocks
are the same in this case and have only one outputs (this is obviously not the
general case, the example was chosen for simplicity reasons). The internal logic
(gates, inverters etc.) represent the Boolean logic operators in the expression.
Note that the figure is for illustration purposes: the inputs on the right interface
are in three-state logic (for enabling the indication that a sub-expression could
not have been yet evaluated) this way the implementation of the internal logic
is more involved.

f a b

(a b)Uf
X(a b)Uf

f a b

(a b)Uf
X(a b)Uf

f a b

(a b)Uf
X(a b)Uf

01
1

11

1

10
1

11

1

00
0

01

?

00 1

Labels: a, c Labels: b, d Labels: e, f

Fig. 5. Building a chain of logical blocks for runtime evaluation of LTL formulae

As introduced above for “designing” the logical blocks we have to re-formalize
the expressions that are in the outputs of the logical blocks to a format where
the atomic expressions to be evaluated at the actual state (Boolean inputs in
the upper interface) and the ones to be read from the three-state output of the
next logical block (right interface) are clearly separated. Since this format is used
for “connecting the present and the future” we call this format as connection
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normal form (CNF). It is easy to see that the only operator that needs special
attention is the until operator (U) since its arguments can not be characterized
as sub-expressions referencing only to the present state or only to the future (e.g.,
pUq evaluates to true if q is true in the present state or q is true in some future
state but until that point p is true for all intermediate steps). As the definition
below introduces, CNF restricts the usage of the U operator in such way that it
can only stand in the scope of a next-time subexpression (Def. 4) The restriction
does not weaken the language, since until expressions can be re-organized to a
format that honors this scheme (Thm. 1).

Definition 4 (Connection normal form (CNF)). An SC-LTL expressions
is in connection normal form (CNF) is the U operator appears only in the argu-
ment of an X operator.

Theorem 1 (Converting SC-LTL expressions to CNF). For any SC-LTL
expression e there exists an SC-LTL expression e′ in CNF for which: Π |= e iff
Π |= e′ for any Π trace.

Proof. Let us introduce the ToCNF notation as the “operator for converting an
SC-LTL expression to CNF” (this way the CNF equivalent of e can be written as
ToCNF(e)). The CNF equivalent of e can be achieved by applying the following
recursive transformation:

ToCNF(σi|σi∈σ) = σi ToCNF(�) = �
ToCNF(εi|εi∈ε) = εi ToCNF(e1 ∧ e2) = ToCNF(e1) ∧ ToCNF(e2)
ToCNF(αX

i |αX
i ∈αX ) = αX

i ToCNF(¬e) = ¬ToCNF(e)
ToCNF(αA

i |αA
i ∈αA) = αA

i ToCNF(X e) = X e

ToCNF(αE
i |αE

i ∈αE ) = αE
i ToCNF(e1Ue2) = ToCNF(¬(¬e2 ∧ ¬(e1 ∧ X (e1Ue2))))

The equivalence of the original expression e and ToCNF(e) is obvious from the
construction, the only non-trivial transformation is the conversion of e1Ue2:

π |= e1Ue2 ↔ ∃0≤i<nπi |= e2 ∧ ∀0≤j<iπ
j |= e1 ↔

↔ (π0 |= e2) ∨ (∃1≤i<nπi |= e2 ∧ ∀0≤j<iπ
j |= e1) ↔

↔ (π0 |= e2) ∨ (∃1≤i<nπi |= e2 ∧ ∀1≤j<iπ
j |= e1 ∧ π0 |= e1) ↔

↔ (π0 |= e2) ∨ (π0 |= e1 ∧ ∃1≤i<nπi |= e2 ∧ ∀1≤j<iπ
j |= e1) ↔

↔ (π0 |= e2) ∨ (π0 |= e1 ∧ π0 |= X (e1Ue2)) ↔
↔ π |= (e2 ∨ (e1 ∧ X (e1Ue2))) ↔ π |= ¬(¬e2 ∧ ¬(e1 ∧ X (e1Ue2)))

Implementation of the Runtime Verifier. Based on this idea the algorithm
of building the “logical chain”, the proof of correctness and the implementation
is quite straightforward. The following enumeration outlines the key steps:

1. The “type” (internal structure) of a logical block is defined by the expressions
on its outputs (expressions on the left interface in the examples): the internal
logic and the inputs are derived from this information. The set of output
expressions can be seen this way as the “specification of the logical block”.
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2. The next-time inputs of a logical block (right interface) specify the type of
the logical block to be connected after it in the next step: the expressions
on the left interface of the next block are the arguments of the outermost X
operators in the right interface of the actual block, e.g., if the inputs on the
right interface of the actual block are X a, X X (b∨ c) and X ((a∨ b)U(c∧d))
then the outputs of the next block should be: a, X (b∨ c) and (a∨ b)U(c∧d).

3. Converting the expressions on the left interface to CNF and collecting the
next-time expressions on the right interface (i) defines the interfaces and
the internal structure of the actual logical block and (ii) specifies the left
interface of the next block. Subsequently applying this algorithm the blocks
of the entire chain can be defined. It can be proven that when taking an initial
set of SC-LTL expressions to be evaluated (left interface of the first block in
the chain), there are always a finite number of “logical block specifications”
to be implemented. The proof is based on the idea that the only operator
that recursively generates itself is the U operator and it is easy to see that
after a sufficient number of reduction steps the algorithm will generate logical
blocks with the same specification (e.g., as (a∨b)Uf in the example) or empty
expression sets (for very simple formulae not containing the U operator).

4. The “logical blocks” can be straightforwardly implemented in software by
generating programming language classes with methods and member vari-
ables representing the interfaces and the internals of the blocks. The propaga-
tion of logical signals can be simulated by back-propagating the information
obtained in the actual step to the previous blocks in the chain (i.e., itera-
tively copying values occurring on the left interface to the right interface of
the previous block and re-evaluating its outputs.

5. It can be proven that the information propagation algorithm outlined above
evaluates all the expressions on the left interface of the first chain element
(i.e., ones that were requested by the user) at the latest at the final step of
the trace. (Obviously expressions that can be evaluated by investigating a
prefix of the trace are evaluated at that time but e.g., the violation of a F a
expression can only be proven at the last step of the trace.)

Runtime checking of SC-LTL expressions requires information about the RTC
steps taken by the application under verification (states, transitions, currently
processed event, actions performed etc.). Almost the same runtime information
is required by the EWD module to check the full behavior. Accordingly, the way
of obtaining the runtime information (implementation of the necessary instru-
mentation) is discussed in Sect. 5, after the presentation of the EWD module.

4 Verification of the Behavior

The runtime verification of the behavior is carried out by a statechart-level
watchdog component (EWD module) of our framework. The EWD module uses
the Extended Hierarchical Automaton equivalent of the statechart as reference
information and observes the behavior by receiving signatures from the applica-
tion. This section outlines the internal operation of the EWD module.
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There were several watchdog solutions proposed in the literature [9], [10],
[11], [12] for concurrent monitoring of hardware-software systems. The simplest
watchdog circuits are hardware timers that observe the life signals of the applica-
tion and are capable of restarting it after a long period of inactivity (application
crash, infinite loop etc.). The more advanced watchdog processors (WDP) are
relatively simple co-processors that detect the deviation of the application from
the correct control flow. The correct behavior is called the reference information,
the behavior actually exposed by the observed application is called the runtime
information.

The WDP obtains the runtime information by observing the CPU fetch
cycles (derived signatures) or by processing signatures of execution explicitly sent
by the observed application (assigned signatures). Nowadays derived signatures
are applicable only in case of low-end CPUs or microcontrollers because the
caching and predictive prefetch techniques used in modern CPUs prevent the
observation of the internally executed instruction sequence based on bus cycles.

The runtime signatures are checked against the reference information which
is typically the control-flow graph (CFG) of the application stored in the watch-
dog [9], [10] or embedded in the signatures sent by the application [11], [12].
Although the CFGs were successfully applied for supervising the execution of
relatively low-level programming constructs (functions, interrupt routines etc.)
the formalisms lacks the capability of expressing event-driven hierarchical state-
transition models and concurrent execution. While classical WDPs are successful
in detecting effects of transient HW impairments, handling SW faults (program-
ming bugs, misunderstood specification, etc.) has remained on open issue.

The high-level, EHA-based watchdog (EWD) proposed in this section over-
comes the weaknesses identified above by explicitly storing the EHA represen-
tation of the application statechart as reference information and maintaining a
local observer of the state configuration of the supervised one. Note that the
EWD module can be implemented on the basis of the EHA, without the need
of a Kripke-structure as the reference model. The runtime information sent by
the application holds identifiers of states and transitions (i.e. assigned signa-
tures). The task of concurrent control-flow verification can be decomposed into
two abstraction levels (contexts):

– The EHA context is responsible for monitoring the initialization process (i.e.
exactly those states are entered that are members of the initial configuration
and the sequence of entry actions corresponds to the state hierarchy) and
the transition selection method (i.e. the trigger event is compatible with the
event received by the object, the source state and the states in the source
restriction set are active and transition priority relations are not violated).

– The transition context is responsible for monitoring the firing of a single
transition i.e. the states exited (entered) by the application are really left
(entered) by the transition, the sequence of exit, associated and entry actions
correspond to the UML semantics etc.

The implementation of the EWD is based on the hierarchy and behavior of
contexts identified above. The contexts are defined using protocol state machines
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Uninitialized

Initialization
Stable Transient

initStarting
initFinishing [ifOK]

initEntry [ieOK] evtProcStarting [epsOK]
evtProcFinishing [epfOK]

trStarting [tsOK] /
createTrCtx

Fig. 6. Operation of the EHA context

Exiting states Entering states
trAssociated [taOK]

stateExit [sxOK] / markInactive stateEntry [seOK] / markActive
trFinishing [tfOK]

Fig. 7. Operation of the transition context

(PSM) driven by messages (signatures) sent by the application and the reference
behavior is obtained from the UML statechart of the application. The PSM of
the EHA context (Fig. 6) consists of four states corresponding to the life-cycle of
the observed object: during construction (Initialization state) the object enters
the states (initEntry message) belonging to the initial configuration. The start
and finish of the initialization phase is indicated by messages (initStarting and
initFinishing). The consistent stable configurations of the observed object are
represented by the Stable state. While processing an event the configuration is
considered to be transient: transitions may be fired (trStarting message) and
states are left and entered accordingly. Since several transitions may fire simul-
taneously according to our decomposition scheme a transition context is created
for each running transition (createTrCtx action) and the messages related to
them (e.g. state entry) are forwarded to the appropriate transition context (dis-
patch message). The start and finish of event processing is indicated by messages
(evtProcStarting and evtProcFinishing).

The actual behavior supervision is implemented by guard predicates assigned
to the transitions of the PSM. Entering a state during the initialization (ieOK )
is valid if and only if (iff) (i) the state belongs to the initial configuration and
(ii) is currently inactive and (iii) all the parent states were already entered. The
initialization may be finished (ifOK ) iff all states of the initial configuration were
entered. A transition may be selected for firing (tsOK ) iff (i) it is triggered by
the currently processed event and (ii) its source and source restriction states are
active and (iii) it is not disabled by an already started transition and (iv) it does
not disable an already started transition. The event processing may be finished
(epfOK ) iff all started transitions were successfully finished. Any messages not
triggering a transition of the PSM are considered to be protocol violations (e.g.
the reception of initStarting in Stable state). The guards discussed here are
automatically derived from the EHA equivalent of the reference statechart.

The PSM of the transition context (Fig. 7) is driven by messages forwarded
by the EHA context. Firing a transition involves three steps: (i) exiting the
source state and all active states refining it (Exiting states), (ii) performing the
action associated to the transition and (3) entering the target state and the ones
in the target determination set (Entering states). While leaving (entering) the



166 G. Pintér and I. Majzik

source (target) states the application sends the stateExit (stateEntry) messages
and the monitor updates its internal configuration observer accordingly (markI-
nactive, markActive). Before performing the action associated to the transition
or finishing the transition the application sends trAssociated and trFinishing
messages respectively.

A state may be exited (sxOK ) iff (i) it is the source of the transition or one of
its refinements and (ii) it is active and (iii) none of its refinements are active. The
action associated to the transition may be performed (taOK ) iff the source state
and all of its active refinements have been left. A state may be entered (seOK )
iff (i) it is the target of the transition or member of the target determination set
and (ii) it is inactive and (iii) all of its parent states have already been entered.
The transition may be finished (tfOK ) iff the target and all states in the target
determination set have been entered.

The watchdog discussed above was implemented as a stand-alone utility in
ANSI C++. The prototype implementation is capable of supervising the exe-
cution of arbitrary number of objects by introducing a new topmost hierarchy
level, the application context that is responsible for observing object construc-
tion and destruction (i.e. capable of detecting some types of memory leaks and
corruptions) and dispatching the messages discussed above to EHA contexts.

5 Instrumentation

The concurrent verification scheme proposed in this paper requires the instru-
mentation of the observed applications: the SC-LTL module needs an interface
for querying specific atomic propositions about the actual configuration of the
statechart implementation and the EWD module requires explicit transmission
of assigned signatures. The implementation of the interface needed by the SC-
LTL module is quite straightforward, this section focuses on the instrumen-
tation needed by the EWD module by proposing a pattern-based instrumen-
tation scheme using the emerging paradigm of Aspect-Oriented Programming
(AOP).

The observed application has to be instrumented for being observed by the
EWD-module in two aspects: (i) the message processing interface of the EWD
must be made accessible for the application and (ii) message transfer routines
have to be included at key control flow points identified above. The first aspect
necessitates the extension of the static data model of the application i.e. the as-
sociation should be implemented, the second task requires the instrumentation
of the behavior. The approach followed by the application programmer for imple-
menting state-based behavior has an important impact on the instrumentation
method to be chosen. Instead of searching for a probably non-existing ultimate
solution for instrumenting all possible statechart implementation techniques, we
propose a pattern-based approach consisting of four steps:

– Identification of extension points in the data model where the static features
for accessing the monitor (e.g. pointers etc.) are to be included.
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Fig. 8. Instrumentation example

– Identification of key control points in the behavioral model (e.g. methods re-
cursively leaving the source state of a transition) where message transmission
routines are to be included.

– Developing instrumentation rules that consist of (i) source code patterns
matching one of the instrumentation points identified above and (ii) source
code fragments to be applied (included, substituted etc.) to matching points.

– Algorithmically applying the instrumentation rules on the source code.

Since the implementation of statechart-based behavior is usually addressed
by applying a design pattern, the process outlined above can be seen as devel-
oping instrumentation patterns for implementation patterns.

Fig. 8 illustrates the identification of extension points according to our ap-
proach in case of a simplified implementation pattern similar to [13] consisting
of an abstract base class (StatechartBase) providing some fundamental facili-
ties and a descendant class derived from it (UserClass) actually implementing
the behavior. In this example the EWD module is associated to the application
class by adding an association targeting the EWD with role “wd”. One of the
key methods of the pattern is the fireTransition function declared in the base
class and implemented in the descendant. This function takes the necessary steps
during the firing of a transition i.e. recursively leaves the source state, performs
the action associated to the transition and enters the target states. Since the
EWD requires the application to send a trStarting message before and a trFin-
ishing message after firing a transition, the instrumentation inserts these actions
in the behavioral model. The instrumentation-related elements (classes, actions
etc.) are highlighted by grey surrounding.

For implementing the pattern matching and introduction of static and dy-
namic instrumentation we propose the application of Aspect-Oriented Program-
ming [14]. AOP aims at separation of concepts and enabling efficient maintenance
of application code by distinguishing core and crosscutting concerns:

– Core concerns belong to the primary purpose of the application. The design
and implementation of core concerns is according to popular methodologies.

– Crosscutting concerns are features that should be implemented and inte-
grated into the application but are difficult to design consistently together
with the application since their purpose and related artifacts are independent
of the primary purpose (e.g. logging, access control).

Adding crosscutting concerns typically introduces several minor code frag-
ments sporadically distributed throughout the entire source resulting in a non-
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maintainable, unreliable implementation. In order to overcome these drawbacks,
AOP provides facilities for defining programming language-level (i.e. not prim-
itive textual) patterns, so called pointcuts that can be automatically matched
against application source. The matching regions are called join points while the
modifications to be applied at join points are called advices. The class-like en-
capsulation of a set of pointcuts and advices is an aspect. Examples for possible
patterns are method calls, object creation, accessing specific member variables
(reading or writing), exception handling etc. The pattern matching can be re-
cursive: pointcuts can be defined containing other pointcuts. AOP compilers are
used to seamlessly weave aspects into the the primary application.

In our approach AOP is used for instrumentation of statechart implemen-
tations enabling the concurrent supervision by the monitor. In case of the ex-
ample in Fig. 8 the association relation between UserClass and EWD can be
implemented e.g. in Java as adding a member variable of type EWD named
wd to UserClass. The instrumentation of the transition firing method can be
implemented as enclosing the original function body within calls informing the
monitor about the start and finishing of the transition respectively. The aspect-
oriented (AspectJ) implementation of the instrumentation is shown below. The
first entry adds a new member variable to the abstract base class, the second one
defines a pointcut as calls for the function fireTransition in classes derived from
the StatechartBase class and finally the latest entry defines the instrumenta-
tion (advice) as discussed above (sending the appropriate message to the EWD
module before and after performing the original function body).

public aspect BehavioralMonitoring {
// Add a member variable to the base class
protected EWD StatechartBase.wd;

// Define a pattern (pointcut) called firingTransitionPattern
// matching calls for fireTransition in derived classes
pointcut firingTransitionPattern():
call(StatechartBase+.fireTransition(Transition tr));

// Define the advice (instrumentation) to be applied when
// matching the previous pointcut
around(): firingTransitionPattern() {

wd.trStarting(tr); // Send trStarting to the EWD
proceed(); // Perform original function body
wd.trFinishing(tr); // Send trFinishing to the EWD

}
}

6 Assessment of Error Detection Capabilities

The error detection capabilities of the stand-alone implementation of EWD
module was assessed by low-level fault injection experiments [15]. Two inher-
ently different statechart implementation patterns (QHsm [13] and EHA2C [16])
were selected for source-code level instantiation of a benchmark statechart.
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The implementation patterns have an important impact on the binary image
(Fig. 9) of the resulting executables (size and content of code and data sections
etc.):

– The QHsm pattern [13] is based on a relatively complex base class and
the descendant classes containing one function for each state resulting in a
relatively large code segment (i.e. larger than the single interpreter function
of the EHA2C pattern). These state functions consist of a switch statement
that performs an indirect jump with respect to the actually processed event
to the code fragment representing the appropriate case edge. Jump target
addresses are typically stored in an initialized array in the code section by
the C compilers. The data part is very compact in case of the QHsm pattern
(the QHsm class maintains some pointers for representing the actual state
and managing transitions). Pointers are directly used for accessing functions.

– Data structures play a key role in the EHA2C pattern while the interpreter
is much simpler than the methods of the QHsm class in the QHsm pattern.
The code section is short containing the single compact interpreter function
only (not taking into consideration the test driver, instrumentation etc.).
Routines implementing the actions are left empty in both implementations in
the investigations presented here. Since the dynamic behavior specification
is stored in a constant data structure, the data segment is relatively large
(Statechart data in Fig. 9) containing dominantly identifiers (i.e. integers
that are used as array indices that can be checked for validity).

Exhaustive fault injection experiments were performed by inverting single bits
of the resulting binary executables. The modified programs were executed on a
UNIX platform and the observations reported by the SW and HW error detec-
tion mechanisms were registered. Although the bit-inversion faults do not exactly
model SW faults primarily addressed by the watchdog, the error detection ratio
was remarkable in case of the EHA2C pattern when injecting fault in the data
section: 21.5% of the detected errors was detected by the EWD only, 40% of in-
jected faults resulted in HW exceptions, the remaining 18.5% were SW assertion
failures. In case of the QHsm pattern the error detection effectiveness of HW
mechanisms was proven to be higher: 83.39% of detected errors was indicated
by HW mechanisms, the EWD detected 7.44%.

Our experiments highlighted that the impairments of the code sections are
mainly detected by hardware mechanisms (illegal instruction or segmentation vi-
olation signals) independently of the implementation method. Detection of faults
in the data sections require different mechanisms in cases of the two patterns:
faults of data used directly for addressing in case of the QHsm pattern can be

Statechart 
code

Statechart
code

Statechart 
data

Initialization Code
section Code sectionInitializationInitialized data Initialized data

Fig. 9. Binary layout of the executables
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detected by the memory management unit (hardware) while the bit inversions
in the complex interpreted data structures used by the EHA2C pattern can be
targeted by software mechanisms (watchdog, assertions) [15].

Since the primary goal of our error detection mechanisms is the detection of
software errors, carrying out an experiment series by injecting software faults in
the applications and assessing the capabilities of the error detection mechanisms
discussed in this paper is subject of our near future research.

7 Indicating Errors by Exception Events

The previous sections introduced our approach for detecting the violations of
temporal and behavioral specifications. Obviously the next question after hav-
ing detected an error by the runtime verifier modules is how to inform the system
about the error for initiating the recovery process.

looseness 2 Since the behavior of the system under normal circumstances is
specified by high-level behavioral models (UML statecharts, activity diagrams,
etc.) it would be beneficial to describe the recovery actions within the same
model. This approach necessitates the introduction of a new event concept that
represent the detection of an exceptional situation. As discussed in Sect. 3 one
of the refinements of the UML event concept (Event metaclass, Fig. 2) is the
SignalEvent metaclass indicating the reception of an asynchronous signal. The
SignalEvent metaclass is associated to the Signal metaclass representing an asyn-
chronous stimulus received by the system. The UML exception concept (Excep-
tion metaclass) is derived from the Signal metaclass. This way the SignalEvents
concept is the natural candidate for being used for indicating exceptional sit-
uations. Signal events used this way will be referenced as exception events in
this discussion. Note that we do not need to introduce a new concept and a
corresponding metaclass since the SignalEvent concept is ideally fitted for being
used as error indicator. The introduction of exception events for being used in
indicating error detection is quite straightforward (for more detailed discussion
see [17]):

– The application processes the events received from the environment by stor-
ing them in an event set and consuming them one-by-one. UML does not
specify the order in which the events are taken from the queue to enable the
implementation of various priority schemes fitted for the application area.

– The operation of the error detection mechanisms is related to the run-to-
completion steps of the statechart: the EWD module observes the behavior
during the RTC steps, the SC-LTL module checks the status of the appli-
cation after finishing the RTC steps. When one of the mechanisms detects
an error it inserts a corresponding exception event in the waiting set of the
application. Exception events should be assigned a high priority (e.g., if the
waiting set is implemented as an event queue that is processed in FIFO or-
der, inserting the exception event directly in the head of the queue ensures
that the exception event will be processed in the next RTC step).
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– Since the UML semantics does not specify the event processing order and
the run-to-completion operation is not modified, introducing this way the
error indications into the behavioral model honors the UML semantics.

8 Conclusions and Future Work

This paper has presented our proposal for a runtime verification framework for
concurrent supervision of UML statechart implementations. The key contribu-
tions are a temporal logic variant fitted for the artifacts of statecharts, an ad-
vanced statechart-level watchdog, a proposal for the automatic implementation of
the required instrumentation and the introduction of the exception event concept
that enables the developers to specify the behavior even in exceptional situations
detected by the verification mechanisms using the visual toolkit of statecharts.

The most important benefits of using our temporal logic language (SC-LTL)
is that it enables the straightforward definition of dependability criteria in early
phases of the development when only preliminary behavioral models are avail-
able, it does not require the developers to “transform” the high-level and typ-
ically less-technical terms of the requirement analysis to the technology and
implementation-oriented terms of fully elaborated behavioral models.

The EWD module of the framework aims at detecting the errors introduced
in the implementation phase by observing the application using the abstract,
fully elaborated behavioral model as reference information.

Our framework seamlessly integrates the two aspects of verification (SC-LTL
and EWD modules) with the corresponding error-handling by introducing the
concept of exception events as error indication signals. Using this facilities the
visual toolkit of UML is used not only for modeling the application under normal
circumstances but also for specifying the behavior in exceptional situations and
serves as a reference information for error detection.

The components of the framework are in various stages of the development.
The prototype of the EWD module was designed and implemented as a stand-
alone application. Preliminary fault injection experiments were carried out for
assessing its error-detection capabilities and the promising results were published
in [15], [18]. Since the fault injection experiments that have been carried out un-
til now (bit inversion faults) do not exactly model the errors EWD module aims
at detecting (errors introduced in the implementation phase due to program-
ming errors and misunderstood specification) in the near future we plan to carry
out experiments by injecting software faults and assessing the error detection
capabilities this way. The implementation of the SC-LTL consist of two layers:
a general-purpose runtime LTL verifier (checking LTL formulae above execution
traces without caring about the semantics of the atomic propositions) and the
SC-LTL layer above it that obtains the necessary information from the state-
chart implementation and translates this data to the labeling abstraction of the
general-purpose layer. The general-purpose runtime verifier module has been de-
signed and implemented. Assessing the error detection capabilities is a subjects
of our near future research and development.
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Abstract. A distributed software system’s deployment architecture can have a 
significant impact on the system’s dependability. Dependability is a function of 
various system parameters, such as network bandwidth, frequencies of software 
component interactions, power usage, and so on. Recent studies have shown 
that the quality of deployment architectures can be improved significantly via 
active system monitoring, efficient estimation of the improved deployment 
architecture, and system redeployment. However, the lack of the appropriate 
tools for monitoring, analyzing, and effecting redeployment at the architectural 
level makes improving a system’s deployment architecture a very challenging 
problem. To cope with these challenges, developers typically resort to ad hoc 
solutions that decrease the potential for reuse and understandability. In this 
paper, we first present an extensible framework that guides the design and 
development of solutions for this type of problem, enables the extension and 
reuse of the solutions, and facilitates autonomic analysis and redeployment of a 
system’s deployment architecture. We then discuss a suite of extensible and 
integrated tools that help developers in realizing the framework.  

1   Introduction 

Consider the following scenario, representative of a large number of modern 
distributed software applications. The scenario addresses distributed deployment of 
personnel in cases of natural disasters, search-and-rescue efforts, and military crises. 
A computer at “Headquarters” gathers information from the field and displays the 
current status: the locations and status of the personnel, vehicles, and obstacles. The 
headquarters computer is networked to a set of PDAs used by “Commanders” in the 
field. The commander PDAs are connected directly to each other and to a large 
number of “troop” PDAs. These devices communicate and help to coordinate the 
actions of their distributed users. Such an application is frequently challenged by 
network disconnections during system execution. Even when the hosts are connected, 
the bandwidth fluctuations and the unreliability of network links affect the system’s 
properties such as availability and latency.  

For any such large, distributed system many deployment architectures (i.e., 
distributions of the system’s software components onto its hardware hosts) will be 
typically possible. Some of those deployment architectures will be more dependable 
than others.  
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For example, a distributed system’s availability can be improved if the system is 
deployed such that the most critical, frequent, and voluminous interactions occur 
either locally or over reliable and capacious network links.  

Finding a deployment architecture that exhibits desirable system characteristics 
(e.g., low latency, high availability) or satisfies a given set of constraints (e.g., the 
processing requirements of components deployed onto a host do not exceed that 
host’s CPU capacity) is a challenging problem: (1) many system parameters (e.g. 
network bandwidth, reliability, frequencies of component interactions, etc.) influence 
the selection of an appropriate deployment architecture; (2) these parameters are 
typically not known at system design time and/or may fluctuate at run time; (3) the 
space of possible deployment architectures is extremely large, thus finding the 
optimal deployment is rarely feasible [12]; and (4) different desired system 
characteristics may be conflicting (e.g., a deployment architecture that satisfies a 
given set of constraints and results in specific availability may at the same time 
exhibit high latency).  

The above problem is further complicated in the context of the emerging class of 
decentralized systems, which are characterized by limited system-wide knowledge 
and the absence of a single point of control. In decentralized systems, selection of a 
globally appropriate deployment architecture has to be made using incomplete, 
locally-maintained information.  

The work described in this paper builds on our previous work [10,12,13,14], where 
we have identified and addressed a subset of the above challenges in the context of 
disconnected operation. We discuss a framework that provides high-level guidelines 
for devising solutions addressing the challenges identified above. The framework’s 
objective is to provide a library of reusable, pluggable, and customizable components 
that can be leveraged in addressing a variety of distributed system deployment 
scenarios. We then describe a suite of integrated tools that help us realize the 
framework. The tools are extensible along several dimensions and allow for: (1) 
inclusion of arbitrary system parameters (hardware host properties, network link 
properties, software component properties, software interaction properties); (2) 
inclusion of appropriate monitors to extract these parameters from a running system; 
(3) specification of desirable system characteristics (e.g., high availability, low 
latency, desired level of security); (4) pluggability of different algorithms targeted at 
improving the desired characteristics; (5) multiple visualizations of the running 
system and its properties; and (6) flexible support for both centralized and 
decentralized systems. Finally, we demonstrate our approach on both a centralized 
and a decentralized example scenario.  

The remainder of the paper is organized as follows. Section 2 briefly outlines the 
related work. Section 3 presents the deployment improvement framework. Section 4 
briefly describes our supporting tools and discusses the specific characteristics of the 
tools that make them suitable for realizing the framework. Finally, Section 5 
demonstrates our approach on two example scenarios. The paper concludes with an 
outline of our future work.  
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2   Related Work 

One of the techniques for improving a system’s dependability is (re)deployment, 
which is a process of installing, updating, and/or relocating a distributed software 
system. Carzaniga et. al. [2] provide an extensive comparison of existing software 
deployment approaches. They identify several issues lacking in the existing 
deployment tools, including integrated support for the entire deployment life cycle. 
An exception is Software Dock [5], which is a system of loosely coupled, 
cooperating, distributed components. Software Dock provides software deployment 
agents that travel among hosts to perform software deployment tasks. Unlike our 
approach, however, Software Dock does not focus on extracting system parameters, 
visualizing, or evaluating a system’s deployment architecture, but rather on the 
practical concerns of effecting a deployment.  

The problem of improving a system’s deployment architecture has been studied by 
several researchers:  

• I5 [1], proposes the use of the binary integer programming model (BIP) for 
generating an optimal deployment of a software application over a given 
network, such that the overall remote communication is minimized. Solving the 
BIP model is exponentially complex in the number of software components, 
rendering I5 applicable only to systems with very small numbers of software 
components and target hosts. Furthermore, the approach is only applicable to 
the minimization of remote communication.  

• Coign [7] provides a framework for distributed partitioning of COM 
applications across the network. Coign monitors inter-component 
communication and then selects a distribution of the application that will 
minimize communication time, using the lift-to-front minimum-cut graph 
cutting algorithm. However, Coign can only handle situations with two 
machine, client-server applications. Its authors recognize that the problem of 
distributing an application across three or more machines is NP hard and do not 
provide approximative solutions for such cases.  

• Kichkaylo et al. [9], provide a model, called component placement problem 
(CPP), for describing a distributed system in terms of network and application 
properties and constraints, and an AI planning algorithm, called Sekitei, for 
solving the CPP model. The focus of CPP is to capture a number of different 
constraints that restrict the solution space of valid deployment architectures. At 
the same time, CPP does not provide facilities for specifying the goal, i.e., a 
criterion function that should be maximized or minimized. Therefore, Sekitei 
only searches for a valid deployment that satisfies the specified constraints, 
without considering the quality of the found deployment.  

• In our own prior work [10,12,14], we devised a set of algorithms for improving 
a software system’s availability by finding an improved deployment 
architecture. The novelty of our approach was a set of approximative 
algorithms that scaled well to large distributed software systems with many 
components and hosts. However, our approach was limited to a predetermined 
set of system parameters, and a predetermined definition of availability, and 
was not extensible to problems with different concerns. Furthermore, it did not 
consider decentralized systems.  
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While all of the above projects propose novel solutions for improving a system’s 
properties through the redeployment of software components, the implementation and 
evaluation of these solutions is done in an ad-hoc way, making it hard to adopt and 
reuse their results. Furthermore, most of these approaches are aimed at improving 
specific system properties, which may restrict their applicability.  

Also related to our work is the research on architecture based adaptation frame-
works, examples of which are [4,16]. As opposed to general purpose architecture-
based adaptation frameworks, we are only considering a specific kind of adaptation 
(i.e., redeployment of components). Therefore, we are able to create a more detailed, 
and hopefully more practical framework that guides the developers in the design of 
their solutions.  

Finally, Haas et. al. [6] provide a scalable framework for autonomic service 
deployment in networks. This approach does not address the exponential complexity 
in the selection of the most appropriate deployment, or that properties of services and 
hosts may change during the execution.  

3   Approach  

We have developed a methodology for improving a distributed system’s availability 
via (1) active system monitoring, (2) estimation of the improved deployment 
architecture, and (3) redeployment of (parts of) the system to effect the improved 
deployment architecture. Based on this three-step methodology we developed a high-
level deployment improvement framework. In this section we describe the 
framework’s components, the associated functionality of each component, and the 
dependency relationships that guide their interaction. We also describe the 
framework’s instantiation for two classes of solutions.  

3.1   Framework Model  

Figure 1 shows the framework’s overall 
structure and the relationships among its 
six high-level components. Note that 
each of the framework’s components 
can have an internal architecture that is 
composed of one or more lower-level 
components. Furthermore, the internal 
architecture of each component can be 
distributed (i.e., different internal low-
level components may communicate 
across address spaces). The arrows 
represent the flow of data among the 
framework components.  

Model. This component maintains the 
representation of the system’s 
deployment architecture. The model is 

 

Fig. 1. Deployment improvement framework 
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composed of four types of parts: hosts, components, physical links between hosts, and 
logical links between components. Each of these types could be associated with an 
arbitrary set of parameters. For example, each host can be characterized by the amount 
of available memory, processing speed, battery power (in case a mobile device is 
used), installed software, and so on. The selection of a set of parameters to be modelled 
depends on the set of criteria (i.e., objectives) that a system’s deployment architecture 
should satisfy. For example, if minimizing latency is one of the objectives, the model 
should include parameters such as physical network link delays and bandwidth. 
However, if the objective is to improve a distributed system’s security, other 
parameters, such as security of each network link, need to be modelled.  

Algorithm. Each objective is formally specified and can either be an optimization 
problem (e.g., maximize availability, minimize latency) or constraint satisfaction 
problem (e.g., total memory of components deployed onto a host cannot exceed that 
host’s available memory). Given an objective and the relevant subset of the system’s 
model, an algorithm searches for a deployment architecture that satisfies the 
objective. An algorithm may also search for a deployment architecture that 
simultaneously satisfies multiple objectives (e.g., maximize availability while 
satisfying the memory constraints).  

In terms of precision and computational complexity, there are two categories of 
algorithms for an optimization problem like this: exact and approximative. Exact 
algorithms produce optimal results (e.g., deployments with minimal overall latency), 
but are exponentially complex, which limits their applicability to systems with very 
small numbers of components and hosts. On the other hand, approximative algorithms 
in general produce sub-optimal solutions, but have polynomial time complexity, 
which makes them more usable.  

In terms of centralization, there are also two classes of algorithms: centralized, 
which are executed in a single physical location, or decentralized, which are executed 
on multiple, synchronized hosts. In Section 5, we describe examples of both 
centralized and decentralized algorithms in more detail.  

Analyzer. Analyzers are meta-level algorithms that leverage the results obtained from 
the algorithm(s) and the model to determine a course of action for satisfying the 
system’s overall objective. In situations where several objective functions need to be 
satisfied, an analyzer resolves the results from the corresponding algorithms to 
determine the best deployment architecture. However, note that an analyzer cannot 
always guarantee satisfaction of all the objectives. Analyzers are also capable of 
modifying the framework’s behavior by adding or removing low-level components 
from the framework’s high-level components. For example, once an analyzer 
determines that the system’s parameters have changed significantly, it may choose to 
add a new low-level algorithm component that computes better results for the new 
operational scenario. Analyzers may also hold the history of the system’s execution 
by logging fluctuations of the desired objectives and the parameters of interest. 
System’s execution profile allows the analyzer to fine-tune the framework’s behavior 
by providing information such as system’s stability, work load patterns, and the 
results of previous redeployments.  
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Monitor. To determine the run time values of the parameters in the model, a monitor 
is associated with each parameter. The monitor is implemented in two parts: a 
platform-dependent part that “hooks” into the implementation platform and performs 
the actual monitoring of the system, and a platform-independent part that interprets 
and may look for patterns in the monitored data. For example, it determines if the data 
is stable enough [14] to be passed on to the model. We will discuss an example of this 
in Section 5.  

Effector. Just like monitors, effectors are also composed of two parts: (1) a platform-
dependent part that “hooks” into the platform to perform the redeployment of 
software components; and (2) a platform-independent part that receives the 
redeployment instructions from the analyzer and coordinates the redeployment 
process. Depending on the implementation platform’s support for redeployment, 
effectors may also need to perform tasks such as buffering, hoarding, or relaying of 
the exchanged events during component redeployment.  

User Input. Some system parameters may not be easily monitored (e.g., security of a 
network link). Also, some parameters may be stable throughout the system’s 
execution (e.g., CPU speed on a given host). The values for such parameters are 
provided by the system’s architect at design time. We are assuming that the architect 
is able to provide a reasonable bound on the values of system parameters that cannot 
easily be monitored. Furthermore, the architect also must be capable of providing 
constraints on the allowable deployment architectures. Examples of these types of 
constraints are location and collocation constraints. Location constraints specify a 
subset of hosts on which a given component may be legally deployed. Collocation 
constraints specify a subset of com-ponents that either must be or may not be 
deployed on the same host.  

3.2   Framework Instantiation  

Figure 2 shows our framework’s instantiation for a centralized system. Centralized 
systems have a Master Host (i.e., central host) that has complete knowledge of the 
distributed system parameters. Master Host contains a Centralized Model, which 
maintains the global model of the distributed system. The Centralized Model is 
populated by the data it receives from Master Monitor and Centralized User Input. 
The Master Monitor receives all of the monitoring data from the Slave Monitors on 
other hosts. Once all monitoring data from all Slave Hosts is received, the Master 
Monitor forwards the monitoring data to the Centralized Model. Each Slave Host 
contains a Slave Effector, which receives redeployment instructions from the Master 
Effector, and a Slave Monitor, which monitors the Slave Host’s Implementation 
Platform and sends the monitoring data back to the Master Monitor. Finally, the 
Master Effector receives a sequence of command instructions from the Centralized 
Analyzer and distributes the redeployment commands to all the Slave Effectors.  

Figure 3 shows our framework’s instantiation for a decentralized system. Unlike a 
centralized software system, a decentralized system does not have a single host with 
the global knowledge of system parameters. Each host has a Local Monitor and a 
Local Effector that are only responsible for the monitoring and redeployment of the 
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host on which they are located. Each host has a Decentralized Model that contains 
some subset of the system’s overall model, populated by the data received from the 
Local Monitor and the Decentralized Model of the hosts to which this host is 
connected. Therefore, if there are two hosts in the system that are not aware of (i.e., 
connected to) each other, then the respective models maintained by the two hosts do 
not contain each other’s system parameters. Each host also has a Decentralized 
Algorithm that synchronizes with its remote counterparts to find a common solution. 
Finally, in a similar way, the Decentralized Analyzer on each host synchronizes with 
its remote counterparts to determine an improved deployment architecture and effect it.  

 

Fig. 2. Framework’s centralized instantiation 

 

Fig. 3. Framework’s decentralized instantiation 
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4   Tool Suite 

While the framework’s design is independent of any specific tool or environment, 
appropriate tool support facilitates the implementation, and automation, of specific 
deployment improvement solutions using the framework. In this section we describe 
two tools and their integration, which assist engineers in developing solutions that 
conform to the framework.  

4.1   DeSi 

DeSi [13] is a visual deployment exploration environment that supports specification, 
manipulation, and visualization of deployment architectures for large-scale, highly 
distributed systems. By leveraging DeSi, an architect is able to enter desired system 
parameters into the model, and also to manipulate those parameters and study their 
effects (shown in Figure 9). For example, the architect is able to use a graphical 
environment to specify new architectural constructs (e.g., components, hosts), 
parameters (e.g., network bandwidth, host memory), and values for the parameters 
(e.g., available memory on a host is 1MB). The architect may also specify constraints. 
For example, the maximum and minimum available resources, the location constraint 
that denotes the hosts that a component can not be deployed on, and the collocation 
constraint that denotes a subset of components that should not be deployed on the 
same host. DeSi also provides a visualization environment for graphically displaying 
the system’s monitored data, deployment architecture, and the results of analysis 
(shown in Figure 10).  

Figure 4 shows the high-level architecture of DeSi. The centerpiece of the 
architecture is a rich and extensible Model, which in turn allows extensions to the 
View (used for model visualization) and Controller (used for model manipulation) 
subsystems.  

Model. DeSi’s Model subsystem is reactive and accessible to the Controller via a 
simple API. The Model currently captures three different system aspects in its three 
components: SystemData, GraphViewData, and AlgoResultData. SystemData is the 
key part of the Model and represents the software system itself in terms of the 
architectural constructs and parameters: numbers of components and hosts, 
distribution of components across hosts, software and hardware topologies, and so on. 
GraphViewData captures the information needed for visualizing a system’s 
deployment architecture: graphical (e.g., color, shape, border thickness) and layout 
(e.g., juxtaposition, movability, containment) properties of the depicted components, 
hosts, and their links. Finally, AlgoResultData provides a set of facilities for capturing 
the outcomes of the different deployment estimation algorithms: estimated 
deployment architectures (in terms of component-host pairs), achieved availability, 
algorithm’s running time, estimated time to effect a redeployment, and so on.  

View. DeSi’s View subsystem exports an API for visualizing the Model. The current 
architecture of the View subsystem contains two components—GraphView and 
TableView. GraphView is used to depict the information provided by the Model’s 
GraphViewData component. TableView is intended to support a detailed layout of 
system parameters and deployment estimation algorithms captured in the Model’s 
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SystemData and AlgoResultData components. The decoupling of the Model’s and 
corresponding View’s components allows one to be modified independently of the 
other. For example, it allows us to add new visualizations of the same models, or to 
use the same visualizations on new, unrelated models, as long as the component 
interfaces remain stable.  

Controller. DeSi’s Controller subsystem 
comprises four components. The Generator, 
Modifier, and AlgorithmContainer manage 
different aspects of DeSi’s Model and View 
subsystems, while the MiddlewareAdapter 
component provides an interface to a, 
possibly third-party, system implementation, 
deployment, and execution platform 
(depicted as a “black box” in Fig-ure 4). The 
Generator component takes as its input the 
desired number of hardware hosts, software 
components, and a set of ranges for system 
parameters (e.g., minimum and maximum 
network reliability, component interaction 
frequency, available memory, and so on). Based on this information, Generator creates 
a specific deployment architecture that satisfies the given input and stores it in Model 
subsystem’s SystemData component. The Modifier component allows fine-grain tuning 
of the generated deployment architecture (e.g., by altering a single network link’s 
reliability, a single component’s required memory, and so on). Finally, the 
AlgorithmContainer component invokes the selected redeployment algorithms 
(examples of algorithms will be presented in Section 5) and updates the Model’s 
AlgoResultData. In each case, the three components also inform the View subsystem 
that the Model has been modified; in turn, the View pulls the modified data from the 
Model and updates the display.  

The above components allow DeSi to be used to automatically generate and 
manipulate large numbers of hypothetical deployment architectures. The 
MiddlewareAdapter component, on the other hand, provides DeSi with the same 
information from a running, real system. MiddlewareAdapter’s Monitor 
subcomponent captures the run-time data from the external MiddlewarePlatform and 
stores it inside the Model’s SystemData component. MiddlewareAdapter’s Effector 
subcomponent is informed by the Controller’s AlgorithmContainer component of the 
calculated (improved) deployment architecture; in turn, the Effector issues a set of 
commands to the MiddlewarePlatform to modify the running system’s deployment 
architecture. The details of this process are further illuminated below.  

4.2   Prism-MW  

Prism-MW [11] is an extensible middleware platform that enables efficient 
implementation, deployment, and execution of distributed software systems in terms 
of their architectural elements: components, connectors, configurations, and events 

 

Fig. 4. DeSi’s archtecture 
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[17]. For brevity, Figure 5 shows the elided class design view of Prism-MW. Brick is 
an abstract class that encapsulates common features of its subclasses (Architecture, 
Component, and Connector). The Architecture class records the configuration of its 
components and connectors, and provides facilities for their addition, removal, and 
reconnection, possibly at system run-time. A distributed application is implemented 
as a set of interacting Architecture objects, communicating via Distribution 
Connectors across process or machine boundaries. Components in an architecture 
communicate by exchanging Events, which are routed by Connectors. Finally, Prism-
MW associates the IScaffold interface with every Brick. Scaffolds are used to 
schedule and dispatch events using a pool of threads in a decoupled manner. IScaffold 
also directly aids architectural self-awareness by allowing the run-time probing of a 
Brick’s behavior, via different implementations of the IMonitor interface.  

To support various aspects of architectural self-awareness, we have provided the 
ExtensibleComponent class, which contains a reference to Architecture. This allows 
an instance of ExtensibleComponent to access all architectural elements in its local 
configuration, acting as a meta-level component that can automatically effect run-time 
changes to the system’s architecture.  

In support of monitoring and redeployment, the ExtensibleComponent is 
augmented with the IAdmin interface. We provide two implementations of the IAdmin 
interface: Admin, which supports system monitoring and redeployment effecting, and 
Admin’s subclass Deployer, which also provides facilities for interfacing with DeSi. 
We refer to the ExtensibleComponent with the Admin implementation of the IAdmin 
interface as AdminComponent; 
analogously, we refer to the 
ExtensibleComponent with the 
Deployer implementation of the 
IAdmin interface as Deployer 
Component.  

As indicated in Figure 5, both 
AdminComponent and Deployerb 
Component contain a ref-erence to 
Architecture and are thus able to 
effect run-time changes to their 
local subsystem’s architecture: 
instantiation, addition, removal, 
connection, and disconnection of 
components and connectors. With 
the help of DistributionConnectors, 
AdminComponent and Deployer 
Component are able to 

 

send and 
receive from any device to which 
they are connected the events that 
contain application-level components (sent between address spaces using the 
Serializale interface). 

 

Fig. 5. Elided UML class design view of Prism-
MW. The four dark gray classes are used by 
application developer. Only the relevant 
middleware  classes are shown 



 A Framework for Ensuring and Improving Dependability 183 

4.3   Tool Support for the Framework  

To integrate DeSi with Prism-
MW, we have wrapped Monitor 
and Effector components of 
DeSi (shown in the Middleware 
Adapter of Figure 4) as Prism-
MW components that are 
capable of receiving Events 
containing the monitoring data 
from Prism-MW’s Deployer 
Component, and issuing events 
to the DeployerComponent to 
enact a new deployment 
architecture. Once the 
monitoring data is received, 
DeSi updates its own system 
model. This results in the 
visualization of an actual 
system, which can now be 
analyzed and its deployment 
improved by employing 
different algorithms. Once the 
outcome of an algorithm is selected by the Analyzer, DeSi issues a series of events to 
Prism-MW’s DeployerComponent to update the system’s deployment architecture.  

DeSi and Prism-MW are directly leveraged to in realizing our framework, as 
illustrated in Figure 6. DeSi provides the facilities for implementing User Input, Model, 
Algorithm, and Analyzer components, while Prism-MW supports implementation of 
Monitor and Effector components. In this section we discuss our realization of each one 
of the framework components, and their support for pluggability, extensibility, 
explorability, and adaptability. These characteristics allow the tool suite to be easily 
tailored to the variation points that arise across different problems.  

Model. We leverage DeSi’s extensible model to implement the Model Component of 
the framework. DeSi’s extensible representation of the system’s deployment 
architecture makes it possible to add or remove new system properties at run-time. 
The model and the accompanying graphical support make it easy to configure the tool 
to application scenarios with different concerns and objectives. Once the appropriate 
model is defined and specified, it is populated with the actual data from a system. The 
data is provided either at run-time or at design time. Some properties are known at 
design time (e.g., initial deployment of the system, available memory on each host, 
etc.), and can be captured in architectural description of the system. To this end, DeSi 
has been integrated with xADL 2.0 [3], an extensible architecture description 
language (xADL). Properties that are not available at design time (e.g., reliability of 
network links, available network bandwidth) are provided by the Monitor component, 
discussed below.  

 

Fig. 6. Realization of the framework via integration of 
Prism-MW and DeSi 
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Algorithm. DeSi provides a pluggable environment for addition and removal of 
algorithms that run on the model. In order to effectively support reusability and 
extensibility within different redeployment algorithms, we have identified the 
following three variation points:  

• The objective function (e.g., maximizing availability, increasing security, etc.) 
that is specified based on the system parameters defined in the model.  

• The constraints on the parameters, reflecting the limited resources in the system 
(e.g., available bandwidth, available memory, etc.), which need to be satisfied 
by the algorithms when searching for a valid solution.  

• The coordination that occurs in decentralized algorithms. There are many decen-
tralized cooperative protocols (e.g., distributed voting [8], auction-based [18]).  

We have used these variation 
points in developing extensible 
and reusable algorithms in 
DeSi (as shown in Figure 7). 
Each algorithm provides an 
implementation of an abstract 
API, which is used by DeSi for 
interfacing with the algorithm. 
The algorithms are composed 
of a main body that denotes the 
algorithm’s approach (e.g., 
greedy algorithm, genetic 
algorithm, etc.), an objective 
function, and the relevant 
constraint functions. Decentralized algorithms are also associated with an 
implementation of a coordination approach. The above methodology for developing 
algorithms simplifies the adoption of existing solutions to new problems. The 
developer first creates the model of the system (as discussed earlier) using the 
graphical interface, specifies the objective function based on the system parameters, 
and finally associates the appropriate implementations of the constraint and 
coordination functions with the algorithm.  

Analyzer. DeSi’s visualisation of the deployment architecture and the exploratory 
utilities allow an engineer to rapidly investigate the space of possible deployments for 
a given system (real or postulated), and determine the deployments that will result in 
greatest improvements (while, perhaps, requiring the smallest changes to the current 
deployment architecture). A user can easily assess a system’s sensitivity to changes in 
specific parameters (e.g., the reliability of a network link) and create deployment 
constraints (e.g., two components must be located on different hosts). However, while 
the analysis by a human user may be possible in small centralized systems with few 
objectives, it is certainly infeasible for large and/or decentralized systems with 
multiple (and potentially conflicting) objectives. Furthermore, given a deployment 
improvement problem, there are many decisions and trade-offs associated with 
improving the deployment architecture: scheduling the time to (re)examine the 
deployment architecture, selecting the algorithm(s) to run, comparing the results, 
resolving conflicts, determining the best result, and scheduling the time to effect the 

 

Fig. 7. Class diagram of algorithm development 
methodology in DeSi for a greedy algorithm 
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solution. Therefore, autonomic solutions for the analysis and conflict resolution are 
needed. DeSi supports these kind of meta-level algorithms via an API for the 
modification of DeSi’s internal architecture. The API allows for addition and removal 
of algorithms, modification of the model, and access to DeSi’s internal data structure 
that holds the results of executing algorithms. Via this API, a meta-level algorithm is 
capable of keeping a profile of the system’s history (by monitoring the system’s 
performance), determining the best configuration for the tool, and selecting the result 
of the best algorithm. Furthermore, in complicated decentralized scenarios, the meta-
level algorithms may leverage a decentralized negotiation technique to coordinate 
their actions with other remote analyzers. Some examples of different analyzers are 
discussed in Section 5.  

Monitor. Prism-MW provides the IMonitor interface associated through the Scaffold 
class with every Brick. This allows for autonomous, active monitoring of a Brick’s run-
time behavior. For example, the EvtFrequencyMonitor records the frequencies of 
different events the associated Brick sends, while NetworkReliabilityMonitor records 
the reliability of connectivity between its associated DistributionConnector and other, 
remote DistributionConnectors using a common “pinging” technique. A meta-level 
AdminComponent (recall Section 4.2) on any device is capable of accessing the 
monitoring data of its local components via its reference to Architecture. In order to 
minimize the time required to monitor the system, monitoring is performed in short 
intervals of adjustable duration. Once the monitored data is stable (i.e., the difference 
in the data across a desired number consecutive intervals is less than an adjustable 
value ), the AdminComponent sends the description of its local deployment 
architecture and the monitored data (e.g., event frequency, network reliability, etc.) in 
the form of serialized Prism-MW Events to the DeployerComponent. Figure 8 depicts 
an application running on top of Prism-MW with the monitoring and deployment 
facilities instantiated and associated with the appropriate architectural constructs. Our 
assessment of Prism-MW’s monitoring support suggests that monitoring on each host 
may induce as little as 0.1% and no greater than 10% in memory and efficiency 
overheads. Note that Prism-MW’s extensible design allows for addition of new 
monitoring capabilities via new implementations of IMonitor interface.  

Effector. Once a new deployment architecture is selected by one of DeSi’s algorithms 
based on the monitoring data supplied by Prism-MW, DeSi informs the 
DeployerComponent (recall Section 4.2) of the desired deployment architecture, 
which now needs to be effected. The effecting process requires coordination among 
different hosts (e.g., ensuring architectural consistency, synchronization, etc.), which 
is an implementation platform-independent task. Prism-MW’s support for 
coordination is implemented in its Admin and Deployer Components:  

• The DeployerComponent sends events to inform AdminComponents of their 
new local configurations, and of the remote locations of software components 
required for performing changes to each local configuration.  

• Each AdminComponent determines the difference between its current and new 
configurations, and issues a series of events to remote AdminComponents re-
questing the components that are to be deployed locally. If devices that need to 
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exchange components are not directly connected, the relevant request events 
are sent to the DeployerComponent, which then mediates their interaction.  

• Each AdminComponent that receives an event requesting its local component(s) 
to be deployed remotely, detaches the required component(s) from its local 
configuration, serializes them, and sends them as a series of events via its local 
DistributionConnector to the requesting device.  

• The recipient AdminComponents reconstitute the migrant components from the 
received events and invoke the appropriate methods on its Architecture object 
to attach the received components to the local configuration.  

Other coordination techniques can also be incorporated into Prism-MW in a similar 
manner via different implementations of the DeployerComponent and 
AdminComponent.  

 

Fig. 8. An example of a distributed system running on top of Prism-MW that is monitored 

User Input and Visualization. Once the monitoring data is gathered from all the 
hosts, the user may invoke one of DeSi’s visualization windows to explore the 
system’s deployment architecture and its relevant parameters. Figure 9 shows the 
table-oriented page of the DeSi editor. This page is divided into five sections. In the 
Parameters table, the properties of every host, component, or link within a software 
system can be viewed and modified, e.g., to assess the sensitivity of a deployment 
architecture to specific parameter changes. In the Constraints panel, the user can 
specify different constraints on component locations (e.g., fixing a component to a 
selected host). Using the set of buttons in the Algorithms panel, different algorithms 
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can be invoked and the results displayed in the Results panel. Figures 10a and b show 
the graph-oriented page of the DeSi editor. The thumbnail view in the upper left 
displays the entire architecture at once and allows users to quickly navigate to any of 
its portions. Since our framework can support large distributed systems with many 
hosts and components, DeSi supports the ability to zoom in and out on a visualized 
system. Hosts are depicted as white boxes while software components are depicted as 
shaded boxes. The solid black lines between hosts represent physical (network) links 
and the thin black lines between components represent logical (software) links. At the 
bottom of the screen, the property sheet allows users to view or modify the properties 
of the link, host, or component that is currently selected. Components can also be 
“dragged-and-dropped” from one host to another. In this way, a user can manually 
create a new system deployment and analyze its effect on system properties (e.g., 
availability, latency, etc.).  

 

Fig. 9. DeSi’s editable tabular view of the system’s deployment architecture 

5   Example Scenarios  

In this section, we describe our experience with the implementation of both the 
centralized and the decentralized instantiation of the framework targeted at (1) 
maximizing a distributed system’s overall availability, and (2) minimizing the 
system’s overall latency.  
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Fig. 10. DeSi’s graphical view of a system’s deployment architecture: (a) zoomed out view 
showing multiple hosts; (b) zoomed in view of the same architecture 
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5.1   Centralized Configuration 

In order to achieve the objective of maximizing a system’s availability and 
minimizing the latency we first created an appropriate model. The model is composed 
of a hierarchical structure of components and hosts that includes the following 
properties:  

• Each component has a required memory size.  
• Each host has an available memory.  
• Each logical link between components is modelled with a frequency of interac-

tion and an average event size.  
• Each physical link among hosts is modelled with a particular network 

reliability, bandwidth, and transmission delay.  
• The system’s model contains the location and collocation constraints, discussed 

in Section 3.1, that restrict the space of valid deployments.  

The values for the host’s available memory, component’s required size, location 
and collocation constraints are all entered into the model by the user via the DeSi tool. 
All the modelled properties that are not entered by the user are monitored at run time 
and added to the model automatically.  

We have used three centralized algorithms, called Exact, Stochastic, and Avala 
[12]. The objective of all these algorithms is to maximize the system’s availability by 
finding a deployment architecture such that the most critical, frequent, and 
voluminous interactions occur either locally or over reliable and capacious network 
links. Below we provide a high-level overview of these algorithms.  

The Exact algorithm tries every possible deployment, and selects the one that re-
sults in maximum availability and satisfies the constraints posed by the memory, 
bandwidth, and restrictions on software component locations. The Exact algorithm 
guarantees at least one optimal deployment (assuming that at least one deployment is 
possible). The complexity of this algorithm in the general case (i.e., with no 
restrictions on component locations) is O(kn), where k is the number of hardware 
hosts, and n the number of software components. By fixing a subset of m components 
to selected hosts, the complexity reduces to O(kn-m).  

The Stochastic algorithm randomly orders all the hosts and all the components. 
Then, going in order, it assigns as many components to a given host as can fit on that 
host, ensuring that all of the constraints are satisfied. Once the host is full, the 
algorithm proceeds with the same process for the next host in the ordered list of hosts, 
and the remaining unassigned components in the ordered list of components, until all 
components have been deployed. This process is repeated a desired number of times, 
and the best obtained deployment is selected. Since it needs to calculate the availability 
and latency for every deployment, the complexity of this algorithm is O(n2).  

Avala is a greedy algorithm that incrementally assigns software components to the 
hardware hosts. At each step of the algorithm, the goal is to select the assignment that 
will maximally contribute to the objective function, by selecting the “best” host and 
“best” software component. Selecting the best hardware host is performed by 
choosing a host with the highest sum of network reliabilities and bandwidths with 
other hosts in the system, and the highest memory capacity. Similarly, selecting the 
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best software component is performed by choosing the component with the highest 
frequency of interaction with other components in the system, and the lowest required 
memory. Once found, the best component is assigned to the best host, making certain 
that the location and collocation constraints are satisfied. The algorithm proceeds with 
searching for the next best component among the remaining components, until the 
best host is full. Next, the algorithm selects the best host among the remaining hosts. 
This process repeats until every component is assigned to a host. The complexity of 
this algorithm is O(n3).  

Our framework’s analyzer component automatically decides which one of the algo-
rithms to run based on the following factors:  

• The size of the architecture — For example, the Exact algorithm finds the 
optimal solution, but due to its complexity it can only be used for architectures 
with very small numbers of hosts (on the order of 5) and components (on the 
order of 15). Therefore, for large architectures either of the other two 
algorithms is used.  

• The system’s availability profile — Analyzer holds a record of the fluctuations 
in the system’s availability (caused by changes in system parameters) that is 
used to determine when the system should be redeployed and what algorithm 
should be invoked. For example, the analyzer selects a more expensive 
algorithm to run if the system is stable (i.e., the system’s availability does not 
fluctuate significantly). On the other hand, if the system is unstable, the 
analyzer runs a less expensive algorithm that could produce faster results for 
the immediate improvement of the system’s availability.  

• The system’s overall latency — The algorithms used in this scenario also 
typically decrease the system’s overall latency [12]. However, in rare situations 
where this is not the case, the analyzer either disallows the results of the 
algorithms to take effect or modifies the solution such that it does not 
significantly increase the system’s overall latency.  

Once the analyzer selects the most appropriate deployment architecture, it creates the 
appropriate set of redeployment instructions and sends it to the Master Effector. The 
Master Effector then forwards the instructions to the appropriate Slave Effectors, 
which leverage Prism-MW’s support for the redeployment of software components in 
the manner described earlier.  

5.2   Decentralized Configuration  

In the development of the decentralized solution, we were able to reuse the 
centralized model by extending it to include the notion of “awareness”. Awareness 
denotes the extent of each host’s knowledge about the global system parameters. The 
Decentralized Model on each hosts synchronizes its local model with the remote hosts 
of which it is aware of (i.e., to which it is directly connected), by sending streams of 
data whenever the model is modified.  

Unlike the centralized solution, getting the user input and monitoring is done 
separately and independently on each host. Similarly to the centralized solution, we 
leverage DeSi and Prism-MW in gathering data about the system parameters.  
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We have used a decentralized algorithm, called DecAp [10], that is based on an 
auction-based protocol to find a solution that significantly improves the system’s 
overall availability. In DecAp, each Decentralized Algorithm component acts as an 
agent and may conduct or participate in auctions. Each host’s agent initiates an 
auction for the redeployment of its local components, assuming none of its 
neighboring (i.e., connected) hosts is already conducting an auction. The auction 
initiation is done by sending to all the neighboring hosts a message that carries 
information about a component to be redeployed (e.g., name, size, and so on). The 
agents receiving this message have a limited time to enter a bid on the component 
before the auction closes. The bidding agent on a given host calculates an initial bid 
for the auctioned component, by considering the frequency and volume of interaction 
between components on its host and the auctioned component. Once the auctioneer 
has received all the bids, it calculates the final bid based on the received information. 
The host with the highest bid is selected as the winner and the component is 
redeployed to it. The complexity of this algorithm is O(k*n

3

).  
The functionality of the decentralized analyzer remains very similar to the 

centralized version, except that the analyzer uses either the voting or the polling 
protocol to decide on the appropriate course of action. Once a redeployment decision 
is made by the analyzers, the redeployment instructions are sent out to the Local 
Effectors, which collaborate in performing the redeployment by leveraging Prism-
MW’s support for redeployment.  

6   Conclusion  

A distributed software system’s deployment architecture can have a significant impact 
on the system’s dependability, and will depend on various system parameters (e.g., 
reliability of connectivity among hosts, security of links between hosts, and so on). 
Improving the deployment architecture such that it exhibits desirable system 
characteristics is a challenging problem. The lack of a common design framework for 
improving the system’s deployment architecture exacerbates the complexity of this 
problem. Existing deployment approaches focus on providing support for installing 
and updating the software system but lack support for extracting, visualizing, and 
analyzing different parameters that influence the quality of deployment.  

In this paper we have presented a design framework for analyzing and improving 
distributed deployment architectures. We also discussed the integration of Prism-MW, 
a lightweight architectural middleware that supports system monitoring and run-time 
reconfiguration, and DeSi, an environment that supports manipulation, visualization, 
and (re)estimation of deployment architectures for large-scale, highly distributed 
systems. In concert, Prism-MW and DeSi provide a rich capability for developing 
solutions that comply to the framework’s rules and structure. Our experience has 
indicated that by leveraging the tool suite to develop solutions we are able to increase 
the potential for creating pluggable, extensible, and reusable components that could 
be used to improve deployment architectures in many different scenarios. In our 
future work we will focus on improving system characteristics beyond availability 
and latency, such as security, durability, and throughput. We also plan to devise 
mitigating techniques for situations where different desired system characteristics 
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may be conflicting. There are also many unresolved issues in the decentralized setting 
that we plan to focus on in the future. For example, modelling user preferences for 
multiple desired system characteristics in a decentralized environment, and devising 
decentralized algorithms for non-collaborative hosts are challenging problems. For 
this we will leverage utility computing techniques to determine a deployment 
architecture that maximizes the users’ overall satisfaction with a distributed system. 
Furthermore, in the future we plan to extend our framework and tool suite to enhance 
redeployment with other strategies (e.g., caching and hoarding of data, queuing of 
remote calls, etc.). These tasks will provide a basis for further assessment and 
evaluation of our framework and the tool suite.  

Acknowledgements  

This material is based upon work supported by the National Science Foundation 
under Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially 
supported by the Jet Propulsion Laboratory.  

References 

[1] M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object Distri-
bution. 2nd Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998. 

[2] A. Carzaniga et. al. A Characterization Framework for Software Deployment Technolo-
gies. Technical Report, Dept. of Computer Science, University of Colorado, 1998.

[3] E. Dashofy, A. van der Hoek, and R. Taylor. An Infrastructure for the Rapid Development 
of XML-based Architecture Description Languages. International Conference  on  Soft-
ware Engineering (ICSE’04), Orlando, Florida, May 2002. 

[4] D. Garlan, S. Cheng, B. Schmerl. Increasing System Dependability through Architecture-
based Self-repair. In R. de Lemos, C. Gacek, A. Romanovsky, eds., Architecting Depend-
able Systems, 2003.

[5] R. S. Hall, D. Heimbigner, and A. L. Wolf. A Cooperative Approach to Support Software 
Deployment Using the Software Dock. International Conference in Software Engineering 
(ICSE’99), Los Angeles, CA, May 1999. 

[6] R. Haas et. al. Autonomic Service Deployment in Networks. IBM Systems Journal, Vol. 
42, No. 1, 2003. 

[7] G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd Sympo-
sium on Operating System Design and Implementation, New Orleans, LA, Feb. 1999.

[8] R. Kieckhafer, C. Walter, A. Finn, P. Thambidurai. The MAFT Architecture for Distribut-
ed Fault Tolerance. IEEE Transactions On Computers, Vol. 37, No. 4, April 1988, pp. 398-
405.

[9] T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using AI 
Planning Techniques. Int’l. Parallel and Distributed Processing Symposium, April 2003. 

[10] S. Malek et. al. A Decentralized Redeployment Algorithm for Improving the Availability 
of Distributed Systems. Technical Report USC-CSE-2004-506, 2004.



 A Framework for Ensuring and Improving Dependability 193 

[11] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Program-
ming-in-the-Small-and-Many. ACM/IFIP/USENIX International Middleware Conference 
(Middleware 2003), Rio de Janeiro, Brazil, June 2003.

[12] M. Mikic-Rakic, et. al. Improving Availability in Large,  Distributed, Component-Based 
Systems via Redeployment. Technical Report USC-CSE-2003-515, 2003.

[13] M. Mikic-Rakic et. al. A Tailorable Environment for Assessing the Quality of Deployment 
Architectures in Highly Distributed Settings. 2nd Int’l Working Conf. on Component De-
ployment (CD 2004), Edinburgh, Scotland, May 2004.

[14] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected Operation via Architectur-
al Self-Reconfiguration. Int’l Conf. on Autonomic Computing (ICAC'04), New York, May 
2004.

[15] M. Mikic-Rakic and N. Medvidovic. Increasing the Confidence in Off-the-Shelf Compo-
nents: A Software Connector-Based Approach. 2001 Symposium on Software Reusability 
(SSR 2001), Toronto, Canada, May 2001.

[16]  P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture Based run time Software Evo-
lution. International Conference on Software Engineering (ICSE’98), Kyoto, Japan, April 
1998.

[17] D.E. Perry, and A.L. Wolf. Foundations for the Study of Software Architectures. Software 
Engineering Notes, Oct. 1992.

[18] C. A. Waldpurger, et. al. Spawn. A Distributed Computational Economy. IEEE Trans. on 
Software Engineering, February 1992.



Enabling Safe Dynamic Component-Based
Software Adaptation�

Ji Zhang, Betty H.C. Cheng, Zhenxiao Yang, and Philip K. McKinley

Software Engineering and Network Systems Laboratory,
Department of Computer Science and Engineering,

Michigan State University, East Lansing, Michigan 48824
{zhangji9,chengb,yangzhe1,mckinley}@cse.msu.edu

Abstract. Recomposable software enables a system to change its structure and
behavior during execution, in response to a dynamic execution environment. This
paper proposes an approach to ensure that such adaptations are safe with respect
to system consistency. The proposed method takes into consideration depen-
dency analysis for target components, specifically determining viable sequences
of adaptive actions and those states in which an adaptive action may be applied
safely. We demonstrate that the technique ensures safe adaptation (insertion, re-
moval, and replacement of components) in response to changing external condi-
tions in a wireless multicast video application.

1 Introduction

Increasingly, computer software must adapt to changing conditions in both the support-
ing computing and communication infrastructure, as well as in the surrounding phys-
ical environment [1]. The need for adaptability is perhaps most acute at the “wireless
edge” of the Internet, where mobile devices balance several conflicting and possibly
cross-cutting concerns, including quality of service on wireless connections, changing
security policies, and energy consumption. To meet the needs of emerging and future
adaptive systems, numerous research efforts in the past several years have addressed
ways to construct adaptable software. Examples include support for adaptability in pro-
gramming languages [2, 3, 4], frameworks to design context-aware applications [5, 6],
adaptive middleware platforms that shield applications from external dynamics [7, 8],
and adaptable and extensible operating systems [9, 10, 11]. In many cases, adaptations
involve not only changes to parameters, but reconfiguration of the software structure
itself.

Despite these advances in mechanisms used to build recomposable software, the
full potential of dynamically recomposable software systems can be realized only if
the adaptation is performed in a disciplined manner. We use the term “safe adaptation”
to mean the program maintains its integrity during adaptation. An adaptation is safe if
(1) it does not violate dependency relationships and (2) it does not interrupt communi-
cation either within a component or between components that would potentially yield
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erroneous or unexpected results. For discussion purposes, we use the term critical com-
munication segment to refer to the communication scenarios mentioned in the second
part of the definition. Unless adaptive software mechanisms are grounded in formalisms
that codify invariants and other properties that must hold during recomposition, the re-
sulting systems will be prone to errant behavior.

This paper describes an approach to ensure safe adaptation in dynamically recom-
posable systems. This work is part of the RAPIDware project, sponsored by the U.S.
Office of Naval Research. RAPIDware addresses the design of adaptive middleware
for dynamic, heterogeneous environments. Such systems require run-time adaptation,
including the ability to modify and replace components, in order to survive hardware
component failures, network outages, and security attacks.

Dynamically adaptive software development comprises four major tasks: Enabling
adaptation makes a program adapt-ready, that is, capable of run-time reconfiguration.
Program monitoring instruments the program and monitors condition changes in the
execution environment. Decision-making determines when and how the program should
be adapted. Process management ensures safe adaptation. Our previous work [3,12,13,
14, 15] has focused primarily on developing techniques for the first three tasks.

This paper focuses on the fourth task, specifically, ensuring that dynamically adap-
tive actions are performed safely. Adaptive actions can involve the insertion of a new
component, removal of a component, or the replacement of an existing component. Our
approach to ensuring safeness during adaptation offers three major features. First, we
use invariants to specify dependency relationships among multiple components exe-
cuting across a single or distributed processes. These dependency relationships enable
analysis techniques to determine which components are affected during a given adap-
tation, and consequently the set of safe states in which dynamic adaptations can take
place. Second, our approach provides centralized management of adaptations, thus en-
abling optimizations to be made when more than one set of adaptive actions can be used
to satisfy a given adaptation need. Third, our approach provides a rollback mechanism
in case an error or failure is encountered during the adaptation process.

We have applied our safeness techniques to adaptive applications primarily in the
mobile computing domain. The remainder of this paper is organized as follows. Back-
ground is overviewed in Section 2. In Section 3, we describe the theoretical foundations
of our approach. Section 4 describes our proposed approach to safe adaptation in detail,
and Section 5 describes its application to a video multicasting system. Section 6 dis-
cusses related work, and Section 7 concludes the paper and discusses future directions.

2 Background

Many approaches to compositional adaptation are based on computational reflection
[16], which refers to the ability of a program to reason about and alter its own behavior.
Typically, reflection is defined to include two parts: introspection (observing internal
behavior and state) and intercession (modifying internal behavior and state). Whereas
programming languages such as Java provide support only for introspection, Adap-
tive Java [3] also supports intercession, thereby enabling the dynamic reconfiguration
of software components. The key programming concept in Adaptive Java is that each
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component offers three interfaces: invocations for performing normal imperative op-
erations on the object, refractions for observing internal behavior, and transmutations
for changing internal behavior. An existing Java class is converted into an adaptable
component in two steps. The first step, absorption, takes place at compile time and
produces an adapt-ready component. The second step, metafication, occurs at run time
and equips the adapt-ready component with a set refractions and transmutations. The
refractive and transmutative interfaces, respectively, can be used to sense internal state
and effect changes to internal structure [17, 18].

We have used Adaptive Java to develop several adaptable components, including
MetaSockets [12], which are used in the illustrative example described in Section 5.
MetaSockets are constructed from the regular Java Socket and MulticastSocket classes,
however, their internal structure and behavior can be modified at run time in response to
external conditions. MetaSocket behavior can be adapted through the insertion and re-
moval of filters that manipulate the passing data stream. For example, filters can perform
encryption, decryption, forward error correction, compression, and so forth. In order to
maintain a separation of concerns between the original program and the code responsi-
ble for adaptation, we applied an aspect-oriented approach to dynamic adaptation [13],
where we wove in code containing MetaSockets to make programs adapt-ready for
adaptations at run time.

Safe adaptation is important even in situations where the recomposition is relatively
constrained. Imagine a distributed application built upon a substrate of MetaSockets,
with different ones adapting to different sets of concerns. Guaranteeing that the adapta-
tions are conducted in a consistent manner that will not corrupt the application behavior
can be a challenging task. In the remainder of this paper, we describe our approach to
addressing this issue.

3 Theoretical Foundations for Safe Adaptation

The adaptations we consider here are component insertion, removal, replacement, and
combinations thereof. A component-based software system can be modeled as a set of
communicating components running on one or more processes. Components are consid-
ered to be communicating as long as there is some type of interaction, such as message
exchange, function calls, IPC, RPC, network communication, and so on. A communica-
tion channel is the facility for communication, such as a TCP connection, an interface,
etc. Communication channels are directed. A two-way communication between two
components is represented with two channels with traffic traversing in opposite direc-
tions. A component can communicate with another as long as there exists a path of one
or more channels connecting these two components.

In general, communication among components can be decomposed into multiple
non-overlapping communication segments of various granularity. A coarse-grained seg-
ment can be divided into multiple finer-grained segments. For example, the communi-
cation between a video server and a video client can be divided into multiple trans-
mission/receive sessions; each session can be divided into multiple frames, where each
frame can be divided into multiple packets.
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Communication can be either local or global. A local communication involves com-
ponents of only one process, such as an ordinary local procedure. Global communica-
tion involves components from more than one process. A UDP datagram transmission
over a network is an example of global communication, involving both sender and re-
ceiver processes.

Unsafe adaptation typically involves communication among components. For a
given system, if the execution flow can be altered in order to isolate a given compo-
nent, then valid adaptations of this component, regardless the order in which they are
performed, should not affect the correctness of the system. On the other hand, adaptive
actions involving communicating components may disrupt normal functional commu-
nication between the adapted component and the rest of the system, thus introducing
system inconsistencies.

In a given system, multiple components may collaborate by communicating with
each other. We use dependency relationships to model these communication patterns.
The correct functionality of a component, c, may require the correct functionality of
other component(s). Absence of other components may disrupt normal functionality
of c.

Dynamic adaptations may interrupt ongoing communication segments. Communi-
cation segments whose interruption may cause errors in the system are termed critical
communication segments. We use a set of finite sequence of indivisible actions (named
atomic actions) to model the set of critical communication segments CCS. The commu-
nication among components in a system is modeled as a (finite or infinite) sequence of
critical communication identifier, atomic action pairs, where a critical communication
identifier is a natural number. Given a communication sequence, S, and a critical com-
munication identifier, CID, we can extract from S the sequence of atomic actions with
the same CID, preserving the relative order, denoted SCID. We say an adaptive system
does not interrupt critical communication segments if the communication sequence of
the adaptive system is S and for all critical communication CID, we have SCID ∈ CCS.
Based on the discussion above, we define a safe dynamic adaptation process as follows:

Definition: A dynamic adaptation process is safe iff

– It does not violate dependency relationships among components.
– It does not interrupt critical communication segments.

In the following subsections, we present our safe dynamic adaptation process.

3.1 Dependency Relationships

Defining Dependency Relationships. In a given system, if the correct functionality of
a component A depends on a condition Cond to be true, then we say A depends on the
condition, denoted as A → Cond, where “→” denotes a dependency relationship. The
condition takes the form of a logic expression across the components. For example,
A → (B1 ⊕ B2) · C means the correct functionality of component A requires the
correct functionality of either component B1 or B2, and C, where the operator “⊕”
represents the logical “xor” operation, and “·” represents the logical “and” operation.
We use a special type of dependency relationship, structural invariant, to specify correct
conditions of the system structure. For example, the structural invariant A · B indicates
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that the correctness of the entire system depends on the correct functionality of both
component A and component B.

In a safe adaptation process, the dependency condition of a component should al-
ways be satisfied when the component is in its fully operational state. Since dependency
relationships are based on communication, if we block the communication channels of
a component, then we may temporarily relax the dependency relationships and perform
necessary adaptive actions. Before the communication in these channels is resumed, the
dependency relationships should be reinforced.

Safe Configurations and Safe Adaptation Paths. A system configuration comprises
a set of components that work together to provide services. If a dependency relation-
ship predicate dr is evaluated to be true when we associate true to all components in a
configuration, and associate false to all components not in the configuration, then we
say the configuration satisfies the dependency relationship. If a configuration satisfies
all the dependency relationships, then this configuration is considered to be a safe con-
figuration, otherwise, it is an unsafe configuration. A system can only operate correctly
when it is in one of its safe configurations. All safe configurations can be deduced from
the dependency relationships and available components.

A system moves from one configuration to another by performing adaptive ac-
tions. An adaptive action is defined as a function from one configuration to another:
adapt(config1) = (config2), where config2 is the resulting system configuration when
the adaptive action, adapt, is applied to config1.

A distributed adaptive action comprises multiple local adaptive actions of individ-
ual processes. Each local adaptive action is divided into three parts: pre-action, in-
action, and post-action. The pre-action is the preparation operation, such as initializing
new components, etc. The in-action alters the structure of the program. The post-action
specifies tasks to be performed after the in-action, such as the destruction of old com-
ponents. Pre-actions and post-actions do not interfere with the functional behavior of
the adapting process.

We assume an adaptive action is atomic and isolated. Atomicity of an adaptive action
implies that the adaptive action should either not start or run to completion. Isolation
of an adaptive action implies that the adaptive action is performed without interleaving
with other operations, i.e., no other operations take place during the adaptive in-action.

An adaptation step is an ordered configuration pair: step =(config1, config2), where
step represents a system configuration transition from config1 to config2. A safe adap-
tation process comprises a set of safe configurations connected by a set of adaptation
steps. These adaptation configurations and steps together form a safe adaptation path
that starts from the source configuration of the first step and ends at the target configu-
ration of the last step.

We can construct a safe adaptation graph (SAG), where vertices are all safe configu-
rations and arcs are all possible adaptation steps connecting safe configurations. A SAG
can be deduced from available adaptive actions. An adaptation step, (config1,config2),
is in the SAG iff
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– Both config1 and config2 are safe configurations.
– There exists an adaptive action adapt, adapt(config1)=config2.

3.2 Critical Communication Segments

Performing adaptive actions may disrupt communication among components. A safe
adaptation process should maintain the integrity of critical communication segments,
i.e., it cannot interrupt critical communication segments. The system state in which the
adaptation does not interrupt any critical communication segments is called a global
safe state.

If a communication is local, then the integrity of its segments can be maintained
by a local process. A local process is said to be in a local safe state, if the adaptive
action does not interrupt local critical communication segments. The integrity of global
critical communication segments is guaranteed by a global safe condition, meaning
that the adaptive action does not interrupt global critical communication segments. For
example, the global safe condition for a UDP-datagram transmission is that the receiver
has received all the datagram packets that the sender has sent, where the transmission
of each datagram packet is a critical communication segment.

A system is in its global safe state iff

– All the processes are in their local safe states.
– The global safe condition is satisfied.

3.3 Enabling Safe Adaptation

Next, we introduce the basis for our safe adaptation process, and prove the process is
safe. Consider the following two statements.

(a) An adaptation process is safe.

(b) The adaptation process is a process that executes according to a safe adaptation
path, where each adaptive action is performed in its global safe state.

We claim that (a) and (b) are equivalent.

Proof sketch: (1) (b) → (a)
If an adaptation process is performed along a safe adaptation path and each adap-

tive action is performed in a global safe state, then during the adaptation process, the
system is either at a safe configuration or in a transition from one safe configuration to
another.

When the system is at a safe configuration, it does not violate dependency rela-
tionships (definition of safe configuration). Because no adaptive action is performed,
critical communication segments will not be interrupted due to adaptations.

Adaptive actions are performed in global safe states, which implies that no critical
communication segments will be interrupted. Adaptations start and end in safe config-
urations, so dependency relationships will not be violated before and after the adaptive
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action. Adaptive actions are atomic, thus we can assume there is no intermediate states
during an adaptive action. Therefore, dependency relationships are not violated during
adaptive actions.

(2) Use proof by contradiction to establish (a) → (b)
If (b) does not hold, then there are two possibilities: (1) the process is not performed

along a safe adaptation path or (2) there is an adaptive action taking place in a state that
is not globally safe. In the first situation, there must be a configuration on the adaptation
path violating dependency relationships, and therefore, the adaptation process is unsafe.
In the second situation, the adaptive action might interrupt a critical communication
segment, and thus, the adaptation process is unsafe. Therefore, if (b) does not hold, (a)
cannot hold. �

4 Safe Adaptation Process

The safe adaptation method is executed by an adaptation manager, typically a separate
process that is responsible for managing adaptations for the entire system. The adap-
tation manager communicates with adaptation agents attached to processes involved
in the adaptation. An agent receives adaptive commands from the adaptation manager,
performs adaptive actions, and reports the status of the local process to the adaptation
manager. Communication channels can be implemented to best match the communica-
tion patterns of the particular system. For example, both Arora [19] and Kulkarni [20]
have used a spanning tree, which is well suited to components organized hierarchically.
In contrast, in a group communication system, multicast may be a better mechanism for
coordination between the adaptation manager and the agent processes.

Our approach comprises three phases: analysis phase, detection and setup phase,
and realization phase. The analysis phase occurs during development time. In this phase,
the programmers should prepare necessary information such as determining depen-
dency invariants, specifying critical communication segments, etc. The detection and
setup phase occurs at runtime. When the system detects a condition warranting adapta-
tion, the adaptation manager should generate a safe adaptation path. In the realization
phase, the adaptation manager and the agents coordinate at runtime to achieve the adap-
tation along the safe adaptation path established during the previous phase.

4.1 Analysis Phase

At development time, the adaptive software developers should prepare a data structure
P , where P = (S, I, T, R, A). S is the set of all configurations. I (I:S → BOOL) is
the conjunction of the set of dependency relationship predicates. T is a set of adaptive
actions. R (R: T → PROGRAM) maps each adaptive action to its corresponding imple-
mentation code in the program, where PROGRAM represents the implementation. The
reconfiguration is achieved by the execution of the implementation code. We associate a
fixed cost to each adaptive action. Factors affecting cost values include system blocking
time, adaptation duration, delay of packet delivery, resource usage, etc. The cost of each
adaptive action is defined as a function A (A: T → VALUE), where VALUE represents
the cost value.
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4.2 Detection and Setup Phase

Once the system detects a condition warranting adaptation, the adaptation manager ob-
tains the target configuration and prepares for the adaptation. This phase contains three
steps.

1. Construct Safe Configuration Set. Based on the source/target configurations of
an adaptation request and dependency relationships, this step produces a set of safe
configurations.

2. Construct Safe Adaptation Graph. Next, we construct a safe adaptation graph
(SAG) that depicts safe configurations as nodes and adaptation steps as edges.

3. Find Minimum Safe Adaptation Path (MAP). Finally, we apply Dijkstra’s short-
est path algorithm on the SAG to find a feasible solution with minimum weight,
where the weight of a path is the sum of the costs of all the edges along the path.

4.3 Realization Phase

This phase requires the coordination of the adaptation manager and the agents at run
time to carry out the actual adaptation according to the safe adaptation path. The adap-
tation manager should ensure that each adaptive action is performed in its global safe
state. We use state diagrams to describe the behavior of each agent and the adaptation
manager, respectively.

The state diagram of an agent at each local process is shown in Figure 1, where
the Courier font denotes message names. Before an adaptive action is performed, each
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agent is in a running state. In this state, every component in the process is running in its
full operation. When the agent receives a reset message, then it moves to a resetting
state. The agent performs the local pre-action, and initiates a reset of the process. In the
resetting state, the process is only partially operating: Some functionalities related to
the adapted component are disabled. When the process achieves its local safe state and
the condition required by the global safe condition, the agent performs some actions
(such as blocking the process) to hold the process in global safe states, so that the
local in-action can be performed safely. Then the agent sends the adaptation manager
reset done message, after which the process is in a safe state. In this state, the
agent will perform its local in-action. When the in-action has finished, the agent sends
the adaptation manager adapt done message and reaches an adapted state. If this
agent is not the only one involved in this adaptive action, then the process needs to
remain blocked in an adapted state until it receives a resume message. When the
agent receives a resume message, it knows that all processes have completed their
adaptive in-actions, so the process proceeds to a resuming state and the agent attempts
to resume the process’ full operation. If the process is the only one involved in the
adaptive action, then it can directly proceed to a resuming state from the adapted
state without blocking. Finally, when the full operation of the process is resumed, the
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agent sends the manager a resume done message and performs the local post-action
of the local adaptive action and returns to the original state, running state.

The state diagram of the adaptation manager of the adaptive system is shown in
Figure 2. The adaptation manager starts from a running state where the system is fully
operational. When an adaptation request is received by the adaptation manager and a
MAP is created after the planning phase, it sends reset messages to all the agents.
Sending the first reset message brings the adaptation manager to an adapting state.
In this state, the adaptation manager waits for the adapt done message from all
agents. When all adapt done messages are collected, the adaptation manager pro-
ceeds to an adapted state. Then the adaptation manager sends resumemessages to the
agents and the manager proceeds to the resuming state. When the adaptation manager
collects resume done messages from all agents, it transitions to the resumed state.
If there are more adaptation steps remaining in the adaptation path, then the adaptation
manager will repeat the traversal of preparing, adapting, adapted, resuming, and re-
sumed states until the system configuration matches the target configuration. When the
last adaptation step has finished, the adaptation manager returns to the running state.

4.4 Failure During Adaptation Process

We identify two major types of failures based on our experience. First, if the communi-
cation between the manager and the agents is not reliable, then the messages between
them may be lost, causing loss-of-message failures. Second, when the agent of a local
process receives a reset message, the local process may not be able to reach a safe
state in a reasonably short period of time, thus causing a fail-to-reset failure. Both types
of failures can be detected by a time-out mechanism on the manager.

Loss-of-Message Failure. Loss-of-message failures caused by transient network fail-
ures can be handled by several attempts to send the messages. However, loss-of-
message failures caused by long-term network failure may cause system inconsisten-
cies if the system does not respond to this type of failures correctly. The general rule
for handling loss-of-message failures is that if the failures occur before the manager
sends out the first resume message, then the adaptation should be aborted. That is,
the manager should stop sending any new reset and adapt messages and all the
affected processes should roll back to the state prior to the adaptation. If the failure oc-
curs after the manager has sent out a resume message, then the adaptation should run
to completion. That is, all the related processes should eventually finish adaptation and
resume.

Fail-to-Reset Failure. In some cases, when an agent receives a reset message, the
local process may be engaged in a long critical communication segment, which may
prevent it from reaching a safe state in a reasonably short period of time, thus caus-
ing a fail-to-reset failure. If a process cannot reach a safe state after it has received a
reset message, then the adaptation process should be aborted, and all affected pro-
cesses should roll back to the state prior to the adaptation.

Failure Handling Strategies. In the event that a failure occurs during an adaptation
step, there are two possible outcomes: (1) The adaptation step succeeds and the sys-
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tem reaches the target safe configuration. (2) The adaptation step fails and the system
reaches a safe configuration prior to the adaptation. If the adaptation step succeeds,
then the manager should continue processing the remaining adaptation steps if there
are any. If the adaptation step fails, then the manager has four options: (1) Retry the
same step. (2) Try other adaptation paths. (3) Attempt to return to the source configura-
tion. (4) Remain at the current safe configuration and wait for user intervention. We use
the combination of all options: The adaptation manager first retries the same step once
more. If it still fails, then it tries the second minimum adaptation path from the current
configuration to the target configuration. If all possible paths to the target configuration
have been tried and have failed, then the adaptation manager tries to return to the source
configuration. If this attempt also fails, then the adaptation manager notifies the users
and waits for user intervention.

The dashed arrows in Figures 1 and 2 show the failure handling transitions on both
the manager and the agents. We claim that the adaptation process is still safe with the
presence of failures. During an adaptation step, a rollback is invoked only when no
process has been resumed, which ensures that no side effect is produced before the
rollback. Otherwise, the adaptation will run to completion, which has the same effect
as if the adaptation had had no failures. The interaction between the manager and the
agents is similar to the two-phase commit protocol [21] if we combine the safe state
with the adapted state in the agents. However, in this work, we consider it clearer
to have two separate states. Moreover, our protocol handles multiple adaptation steps
where failures may occur at various phases of each step, whereas the two-phase commit
protocol only addresses a single adaptation step.

5 Video Streaming Example

We use a video multicasting system to illustrate the safe adaptation process. Figure 3
shows the initial configuration of the application, comprising a video server and one
or more video clients. In this example, one client is a hand-held computer (e.g. iPAQ)
with a short battery life and limited computing power, and the second client is a lap-
top (e.g. Toughbook) with reasonable computing power, but limited battery capacity.
On the server, a web camera captures video input and a video processor encodes the
stream. The encoded video, already packetized, is delivered to the network through a
MetaSocket. After traversing a chain of zero or more (encoder) filters, the packets are
eventually transmitted on a multicast socket. On each client, the packets are processed
by a chain of decoder filters in a receiving MetaSocket. Subsequently, they are passed to
the video processor, where they are decomposed into video frames. Finally the frames
are displayed in a video player.

In this example, two main encryption schemes are available for processing the data:
DES 64-bit encoding/decoding, and DES 128-bit encoding/decoding. The sender has
two components: E1, a DES 64-bit encoder and E2, a DES 128-bit encoder. The hand-
held client has three components: D1, a DES 64-bit decoder, D2, a DES 128/64-bit
compatible decoder, and D3, a DES 128-bit decoder. The laptop client has two compo-
nents: D4, a DES 64-bit decoder and D5, a DES 128-bit decoder. In general, a DES en-
coder generates DES encrypted packets from plain packets and a DES decoder decrypts
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Fig. 3. Configuration of the video streaming application

the DES encrypted packets. Each decoder implements the “bypass” functionality: when
it receives a packet not encoded by the corresponding encoder, it simply forwards the
packet to the next filter in the chain. The available adaptive actions are: (1) inserting,
removing, and replacing a single encoder or decoder; (2) inserting, removing, and re-
placing an encoder/decoder pair; (3) inserting, removing, and replacing an encoder/de-
coder triple. The overall adaptation objective is to reconfigure the system from running
the DES 64-bit Encoder/Decoders to running the DES 128-bit Encoder/Decoders to
“harden” security at run time. We use a separate process to implement the adaptation
manager and attach an agent thread to both the server and the clients, respectively. In
this particular application and system architecture, the adaptation manager uses a direct
TCP connection to communicate with the agents.

5.1 Safe Adaptation Path and MAP

By analyzing the communication patterns between the encoders and the decoders, we
find that the correct functionality of a decoder does not require an encoder, but in order
to decode a packet generated by an encoder, there must be a corresponding decoder for
each encoder. We have the following invariants, where

⊗
represents “exclusively select

one from a given set of elements”.

– System Invariants:
• Resource constraint:

⊗
(D1, D2, D3)

One of the receivers, the hand-held device, allows only one DES decoder to be
in the system at a given time due to computing power constraints.

• Security constraint:
⊗

(E1, E2):
The sender should have one encoder in the system so that the data is encoded
during the adaptation.

– Dependency invariants:
• E1 → (D1 ∨ D2) ∧ D4

E1 encoder requires the D1 or D2 decoder to work with the D4 decoder.
• E2 → (D3 ∨ D2) ∧ D5

E2 encoder requires the D3 or D2 decoder to work with the D5 decoder.

We input source and target configurations to the adaptation manager that uses the
dependency relationship expressions to generate the safe configuration set. For brevity
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and automatic processing purposes, we use a 7-bit vector (D5,D4,D3,D2,D1,E2,E1) to
represent a configuration: If the corresponding bit is “1”, then the component is in the
configuration, otherwise, it is not. The source configuration is (0100101) and the target
configuration is (1010010).

Table 1. Safe configuration set

bit vector configuration bit vector configuration

0100101 D4,D1,E1 1100101 D5,D4,D1,E1
1101001 D5,D4,D2,E1 1101010 D5,D4,D2,E2
1110010 D5,D4,D3,E2 0101001 D4,D2,E1
1001010 D5,D2,E2 1010010 D5,D3,E2

Table 2. Adaptive actions and corresponding cost

Action Operation Cost (ms) Description
A1 E1 → E2 10 replace E1 with E2
A2 D1 → D2 10 replace D1 with D2
A3 D1 → D3 10 replace D1 with D3
A4 D2 → D3 10 replace D2 with D3
A5 D4 → D5 10 replace D4 with D5
A6 (D1, E1) → (D2, E2) 100 A1 and A2
A7 (D1, E1) → (D3, E2) 100 A1 and A3
A8 (D2, E1) → (D3, E2) 100 A1 and A4
A9 (D4, E1) → (D5, E2) 100 A1 and A5

A10 (D1, D4) → (D2, D5) 50 A2 and A5
A11 (D1, D4) → (D3, D5) 50 A3 and A5
A12 (D2, D4) → (D3, D5) 50 A4 and A5
A13 (D1, D4, E1)→ (D2, D5, E2) 150 A1 and A10
A14 (D1, D4, E1)→ (D3, D5, E2) 150 A1 and A11
A15 (D2, D4, E1)→ (D3, D5, E2) 150 A1 and A12
A16 −D4 10 remove D4
A17 +D5 10 insert D5

The resulting safe configuration set is shown in Table 1. The adaptive actions shown
in Table 2 are input to the adaptation manager. Only related actions are listed. The cost
column is packet delay in milliseconds. Note, in order to perform some of the actions
(e.g., A6-A9), the server has to be blocked until the last packet processed by the encoder
has been decoded by the decoder(s) on the client(s). As a result, these actions are much
more costly than other actions.

The adaptation manager creates the SAG shown in Figure 4 and uses Dijkstra’s
shortest path algorithm to obtain the shortest path, which in this example, has cost
50 ms: A2, A17, A1, A16, A4.
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(D4,D1,E1)
A17:+D5

A17: +D5
A16: -D4

A7: (D1,E1)->(D3,E2)

A1:E1->E2

A9: (D4,E1)->(D5,E2)

A2: D1->D2

A2: D1->D2

A4: D2 ->D3

A4: D2 ->D3

A16: ->D4

A13: (D1,D4,E1)->(D2,D5,E2)
A15: (D2,D4,E1)->(D3,D5,E2)

A14: (D1,D4,E1) -> (D3,D5,E2)

(D5,D4,D2,E2)(D5,D4,D2,E1)

(D5,D2,E2)(D4,D2,E1)

(D5,D3,E2)

(D5,D4,D3,E2)(D5,D4,D1,E1)

Fig. 4. Safe Adaptation Graph

5.2 Performing Adaptive Actions Safely

The adaptation steps for the safe adaptation path are:

1. Action A2: Replace D1 with D2.

2. Action A17: Insert D5.

3. Action A1: Replace E1 with E2.

4. Action A16: Remove D4.

5. Action A4: Replace D2 with D3.

Step (1), Action A2, only involves the process running the MetaSocket on the hand-
held. The adaptation manager sends a reset message to the agent for the hand-held
device. The global safe state of this action is the same as the local safe state of the de-
vice: the DES decoder is not decoding a packet. When the agent receives the reset
message, it sets a “resetting” flag in the MetaSocket. When the decoder finishes decod-
ing a packet, it checks the “resetting” flag. If it is set, then it notifies the agent and blocks
itself. At which point, the agent sends a reset done message to the adaptation man-
ager and performs the (A2 : D1 → D2) action. Then it sends an adapt done mes-
sage to the adaptation manager. When the adaptive action is done, the agent directly re-
sumes the hand-held’s full operation and sends a resume done message to the hand-
held. Other steps (2-5) can be performed in a manner similar to that used in step (1).

6 Related Work

While there have been numerous techniques developed to support dynamic adaptation,
we limit our review to work that explicitly addresses the correctness issue of software
adaptation. As part of the RAPIDware project, we introduced an aspect-oriented ap-
proach to adding dynamic adaptation infrastructure to legacy programs to enable dy-
namic adaptation [13]. We separated the adaptation concerns from functional concerns
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of the program, resulting in a clearer and more maintainable design. Also, as part of the
RAPIDware project, Kulkarni et al. [20] proposed a distributed approach to safely com-
posing distributed fault-tolerance components at run time. In more recent work [22],
they introduced a transitional-invariant lattice technique that uses theorem proving tech-
niques to show that during and after an adaptation, the adaptive system is always in cor-
rect states with respect to satisfying the transitional-invariants. Their approach, how-
ever, does not guarantee the safeness of adaptation in the presence of failures during
adaptation. In contrast, our approach employs a centralized manager, which enables
global optimization and ensures safeness.

Other dynamic adaptation techniques have also explicitly addressed correctness is-
sues. Kramer and Magee [23] introduced the notion of a quiescent state of a component,
in which connections and behaviors of the component can be adapted safely. The con-
cept of quiescent state is close to that of local safe state introduced in this paper. The
safe adaptation process in our paper also considers other critical factors such as global
conditions and safe configurations. Cactus [24] is a system for constructing highly con-
figurable distributed services and protocols. In Cactus, a host is organized hierarchically
into layers, where each layer includes many adaptive components. Chen et al. [24] pro-
posed a graceful adaptation protocol that allows adaptations to be coordinated across
hosts transparently to the application. Appavoo et al. [25] proposed a hot-swapping
technique that supports run-time object replacement. In their approach, a quiescent state
of an object is the state in which no other process is currently using any function of the
object. We argue that this conditions is not sufficient in cases where a critical commu-
nication segment between two components includes a series of function invocations.
Also, they did not address global conditions for safe dynamic adaptation. Amano et
al. [26] introduced a model for flexible and safe mobile code adaptation, where adap-
tations are serialized if there are dependencies among adaptation procedures. Their ap-
proach supports the use of assertions for specifying preconditions and postconditions
for adaptation, where violations will cancel the adaptation or roll back the system to
the state prior to the adaptation. Their work focuses on the dependency relationships
among adaptation procedures, whereas our work focuses on dependency relationships
among components.

Researchers have also studied architectural description language (ADL)-based ap-
proaches to dynamic architectures. Kramer et al. developed Darwin [27], a configura-
tion description language that supports two types of dynamic component instantiations:
lazy instantiation and direct dynamic instantiation. They used π-calculus [28] to define
the semantics of the elaboration of Darwin programs. In [29], they used FSP to model
adaptive systems, and used a property automaton to verify the correctness of adapta-
tions. C2 [30] is an architectural style proposed by Taylor et al. ArchStudio [31] is a
management tool for dynamic C2 style software evolution.

7 Conclusions and Future Work

This paper presented an approach to safe dynamic adaptation; the approach can be ap-
plied in conjunction with existing dynamic adaptation techniques. We use a centralized
adaptation manager to schedule the adaptation process, which results in a globally min-
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imum solution. We block the newly added components until the system has reached a
new safe state and thus avoid unsafe adaptation. We also use timeout and rollback mech-
anisms to deal with possible failures during the adaptation process to ensure atomicity
of adaptive actions.

Our approach may greatly benefit from using formal requirements specifications
of adaptations [32]. In our approach, the detection and setup phase and the realization
phase are largely automated. The algorithms are carried out by the adaptation manager
and the agent programs. However, as with other approaches that use dependency re-
lationships, the developers must specify the dependency relationships and the adaptive
actions in the analysis phase. We are investigating techniques that enable automatic gen-
eration of dependency relationships from formal software requirements specifications.
Currently, the developers identify the critical communication segments and safe states
based on the requirements and the design. If the requirements are formally specified
and there is a strict correspondence between the requirements and the design, then it
is also possible to automatically derive the critical communication segments and safe
states from the formal requirements specifications. One promising approach is to use a
temporal logic formula to specify the set of critical communication segments of a com-
ponent [32]. The run-time component states can be monitored and the formula can then
be dynamically evaluated. If all the obligations of the formula are fulfilled in a state,
then the state can be automatically identified as a safe state.

Scalability is a concern for our technique. Because our technique searches the opti-
mal path in a SAG, the computational complexity may be high when there are numerous
adaptive components in the system (exponential to the number of components involved
in an adaptation). To handle the complexity, we can divide the adaptive components of
a system into multiple collaborative sets where component collaborations occur only
within each set. The component adaptation of each set can be handled independently,
thereby reducing the complexity. Also, Dijkstra’s shortest path algorithm requires the
entire SAG to be generated. However, in many cases, only a small fraction of the graph
is actually related to the given adaptation. We are investigating heuristic-based algo-
rithms that performs partial exploration of the SAG, and would therefore reduce the
complexity of this step to O(n3), where n is the number of components in a collabora-
tive set.
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Abstract. Distributed applications must often consider and select the
appropriate trade-offs among three important aspects – fault-tolerance,
performance and resources. We introduce a novel concept, called ver-
satile dependability, that provides a framework for analyzing and rea-
soning about these trade-offs in dependable software architectures. We
present the architecture of a middleware framework that implements ver-
satile dependability by providing the appropriate ”knobs” to tune and
re-calibrate the trade-offs. Our framework can adjust the properties and
the behavior of the system at development-time, at deployment-time,
and throughout the application’s life-cycle. This renders the versatile
dependability approach useful both to applications that require static
fault-tolerance configurations supporting the loss/addition of resources
and changing workloads, as well as to applications that evolve in terms
of their dependability requirements. Through a couple of specific exam-
ples, one on adapting the replication style at runtime and the other on
tuning the system scalability under given constraints, we demonstrate
concretely how versatile dependability can provide an extended coverage
of the design space of dependable distributed systems.

1 Introduction

Oftentimes, the requirements of dependable systems are conflicting in many
ways. For example, optimizations for high performance usually come at the ex-
pense of using additional resources and/or weakening the fault-tolerance guar-
antees. Conversely, distributed fault-tolerance techniques, such as replication,
can adversely impact the performance and scalability. It is our belief that these
conflicts must be viewed as trade-offs in the design space of dependable systems
and that only a good understanding of these trade-offs can lead to the devel-
opment of useful and reliable systems. Unfortunately, many existing approaches
offer only point solutions to this problem because they hard-code the trade-offs
in their design choices, rendering them difficult to adapt to changing working
conditions and to support evolving requirements over the system’s lifetime.
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As an alternative, we propose versatile dependability1 , a novel design para-
digm for dependable distributed systems that focuses on the three-way trade-off
between fault-tolerance, quality of service (QoS) – in terms of performance or
real-time guarantees – and resource usage. This framework offers a better cover-
age of the dependability design-space, by focusing on an operating region (rather
than an operating point) within this space, and by providing a set of “knobs”
for tuning the trade-offs and properties of the system.

Our versatile dependability framework is an enhancement to current middle-
ware systems such as CORBA or Java. While these middleware do have fault-
tolerance support (through the Fault-Tolerant CORBA [2] and the Continuous
Availability APIs for Java [3] standards), they lack the support for run-time
adaptability. Furthermore, tuning these off-the-shelf middleware is an awkward
task for their users because, in most cases, the adjustment process requires de-
tailed knowledge of the system’s implementation and because the internal tuning
mechanisms are hard to control in an effective manner and can produce unde-
sirable side-effects.

For example, the Fault-Tolerant CORBA standard [2] lists a set of “fault-
tolerance properties” (e.g., the replication style, the minimum number of repli-
cas, the checkpointing intervals, the fault monitoring intervals and their time-
outs), without providing any guidance as to how they ought to be set or how
they map into externally-observable properties, such as scalability. We call these
internal fault-tolerance properties the low-level knobs. The versatile dependabil-
ity approach advocates the implementation of high-level knobs, corresponding
to the external properties of the system, that encode the knowledge about the
essential trade-offs and that provide the necessary insights on how to config-
ure the system appropriately. Hence, the users of our COTS middleware do
not need to quantify or understand the intricate relationships between inter-
nal and external properties, while enjoying the full benefits of an increased
flexibility.

This paper makes four main contributions in describing:

– A new concept, versatile dependability, directed at achieving tunable, re-
source and QoS aware fault-tolerance in distributed systems (Section 2);

– A software architecture for versatile dependability with four design goals:
tunability, quantifiability, transparency and ease of use (Section 3);

– How to implement the tuning knobs of versatile dependability, including
two examples: dynamically adapting the replication style at runtime and
adjusting the system scalability under specified constraints (Section 4);

– Why versatile dependability is relevant for several classes of applications,
and what are the biggest challenges for extending this research direction
(Section 5).

1 An earlier version of this chapter, containing the first mention of versatile depend-
ability, was published as [1].
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2 Versatile Dependability

We visualize the development of dependable systems through a three-
dimensional dependability design-space, as shown in Figure 1, with the following
axes: (i) the fault-tolerance “levels” that the system can provide, (ii) the high
performance guarantees it can offer, and (iii) the amount of resources it needs
for each pairwise {fault-tolerance, performance} choice. In contrast to existing
dependable systems, we aim to span larger regions of this space because the
behavior of the application can be tuned by adjusting the appropriate settings.
In our research, we strive to achieve a high degree of flexibility by evaluating
the wide variety of choices for implementing dependable systems, and by quan-
tifying the effect of these choices on the three axes of our {Fault-Tolerance ×
Performance × Resources} design space. The purpose of this paper is to quan-
tify some of the trade-offs among these three properties and to demonstrate
how we can implement the most effective tuning knobs that allow system users
and administrators, as well as application designers, to adjust these trade-offs
appropriately.

Our general versatile dependability framework consists of:

1. Monitoring various system metrics (e.g., latency, jitter, CPU load) in order
to evaluate the conditions in the working environment [4];

2. Defining contracts for the specified behavior of the overall system;
3. Specifying policies to implement the desired behavior under different working

conditions;
4. Developing algorithms for automatic adaptation to the changing conditions

(e.g., resource exhaustion, introduction of new nodes) in the working envi-
ronment.

Performance
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Fault−Tolerance

Existing Dependable Systems 

Versatile Dependability 

Fig. 1. Design space of dependable systems
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Table 1. Mapping from high-level to low-level knobs

High-level
Knobs

Scalability Availability Real-Time Guarantees

Low-level
Knobs

Replication
Style, Replica-
tion Degree

Replication Style,
Checkpointing Fre-
quencya

Replication Style, Repli-
cation Degree, Check-
pointing Frequency

Application
Parameters

Request Fre-
quency, Re-
quest and
Response Size,
Resources

State Size, Re-
sources

Request Frequency,
Request and Response
Size, State Size, Re-
sources

a This knob is relevant only for passive replication (see Section 3.1)

Versatile dependability was developed to provide a set of control knobs to
tune the multiple trade-offs. There are two types of knobs in our architecture:
high-level knobs, which control the abstract properties from the requirements
space (e.g., scalability, availability), and low-level knobs, which tune the fault-
tolerant mechanisms that our system incorporates (e.g., replication style, number
of replicas). The high-level knobs, which are the most useful ones for the system
operators, are influenced by both the settings of the low-level knobs that we
can adjust directly (e.g., the replication style, the number of replicas, the check-
pointing style and frequency), and the parameters of the application that are
not under our control (e.g., the frequency of requests, the size of the application
state, the sizes of the requests and replies). Through an empirical evaluation
of the system, we determine in which ways the low-level knobs can be used to
implement high-level knobs under the specified constraints, and we define adap-
tation policies that effectively map the high-level settings to the actual variables
of our tunable mechanisms. This approach complements a formal analysis of
the system’s correctness and performance and it shows how the system can be
tuned and configured in its working environment. Table 1 shows three examples
of mapping from high-level knobs to low-level knobs; in a complex system there
can be many more such knobs and many other parameters that influence those
knobs. In this paper, we consider a representative set of these knobs to illustrate
the tuning process.

3 The Architecture of Our Framework

Our framework is based on the Fault-Tolerant CORBA specification [2], which
has only primitive support for tunable fault-tolerance. The tuning and adapta-
tion to changing environments are enacted in a distributed manner, by a group
of software components that work independently and that cooperate to agree
and execute the preferred course of action. In order to add a minimal over-
head to the systems that we are continuously monitoring and tuning, we try to
keep our system as simple as possible and to limit its functionality to the core
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mechanisms needed to add and adjust fault-tolerance. We believe that this is
important, especially since footprint and scalability are major concerns in some
critical middleware applications.

This research forms a fundamental part of the MEAD (Middleware for Em-
bedded Adaptive Dependability) project [4] which is currently under develop-
ment at Carnegie Mellon University. While we currently focus on CORBA
systems, which seemed the ideal starting point for this investigation given our
previous experiences,2 our approach is intrinsically independent of the specific
middleware platform and can be applied to other systems as well.

3.1 A Tunable, Distributed Infrastructure

To ensure that our overall system architecture enables both the continuous mon-
itoring and the simultaneous tuning of various fault-tolerance parameters, we
have four distinct design goals for our system architecture:

– Tunability and homogeneity: having one infrastructure that supports mul-
tiple knobs and a range of different fault-tolerant techniques;

– Quantifiability: using precise metrics to evaluate the trade-offs among vari-
ous properties of the system and to develop benchmarks for evaluating these
metrics;

– Transparency: enabling support for replication-unaware and legacy applica-
tions;

– Ease of use: providing simple knobs that are intuitively easy to adjust.

The taxonomy of low-level and high-level knobs helps us address the flexibil-
ity and ease of use requirements of versatile dependability: the knobs preserve
2 MEAD was born out of the lessons that we learned in architecting and implementing

the Eternal system [5]; however, Eternal was primarily designed to support fault-
tolerant CORBA – real-time, resource-awareness and tunability were not considered
in its design.
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the tunability of the system’s behavior (by not hard coding the trade-off settings
in the design choices) and they translate the internal variables of the framework
into external properties that make sense for the system operators. The trans-
parency and quantifiability requirements of versatile dependability are achieved
through the architecture of our framework, which is discussed below.

We assume a distributed asynchronous system, subject to hardware and
software crash faults, transient communication faults, performance and timing
faults. The architecture of our system is illustrated in Figure 2. At the core of
our approach is the replicator, a software module that can be used to provide
fault-tolerance transparently to a middleware application. The replicator inter-
cepts the system calls of the CORBA application (on both the client and server
sides), redirects the CORBA messages between hosts to a reliable group com-
munication service, and manages groups of client and server replicas. Note that
the application and the ORB need not be aware of all these tasks; in fact, we
have successfully used the replicator to obtain fault-tolerant versions of legacy,
un-replicated applications.

The replicator module is implemented as a stack of sub-modules with three
layers. The top layer is the interface to the CORBA application; it intercepts the
system calls in order to understand the operations of the application. The middle
layer contains all the mechanisms for transparently replicating processes and
managing the groups of replicas, as well as the knobs needed to tune the system.
The bottom layer is the interface to the group communication package and is
an abstraction layer to render the replicator portable to various communication
platforms.

The unique feature of the replicator is that its behavior is tunable and that it
can adapt dynamically to changing conditions in the environment. Given all the
design choices for building dependable systems, the middle layer of the replicator
can choose, from among different implementations, those that are best suited to
meet the system’s requirements. In the following paragraphs, we describe some
of the techniques used by the replicator.

Library Interposition. This technique allows the replicator to perform tasks
transparently to the application and to CORBA itself [6]. The replicator is a
shared library that intercepts and redefines the standard system calls to convey
the application’s messages over a reliable group communication system. Using
linker-related environment variables (e.g., LD_PRELOAD), we can insert the repli-
cator ahead of all the other shared libraries in the CORBA application process’
address space. At runtime, symbol definitions of interest to us (primarily socket
and network level routines) resolve to the replicator rather than the default op-
erating system libraries. This is accomplished with no change to the application,
the ORB, or the operating system, thereby achieving transparency. The calls
redefined inside the replicator are interposed between the application and the
system libraries, such that, at runtime, the application (unknowingly) calls the
functions from the replicator, instead of the standard ones. Because the repli-
cator mimics the TCP/IP programming interface, the application continues to
believe that it is using regular CORBA GIOP connections. For example, if a
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client is trying to send a message to a server, we can intercept it and broadcast
it (using group communication) to several replicas of that server in order to
increase the dependability of the service.

Group Membership and Communication. We are currently using the
Spread toolkit [7] for group membership and communication. This package pro-
vides an API (based on the extended virtual synchrony model [8]) for join-
ing/leaving groups, detecting failures and reliable multicasting. Spread can pro-
vide five types of guarantees for message delivery: best effort (no guarantees),
reliable delivery, FIFO ordering (by sender), causal ordering and total order-
ing. These guarantees enable us to ensure the consistency between the different
replicas of the application. The price we have to pay for this consistency is that
our system inherits the performance overhead of maintaining virtual synchrony
between the nodes and the behavior of the replicator is closely related to the
performance of the underlying group communication protocol.

Tunable Fault-Tolerant Mechanisms. We provide fault-tolerant services
to both CORBA client and server applications by replicating them in various
ways, and by coordinating the client interactions with the server replicas. We
implement replication at the process level rather than at the object level because
a CORBA process may contain several objects (that share “in-process” state),
all of which have to be recovered, as a unit, in the event of a process crash.
Maintaining consistent replicas of the entire CORBA application is, therefore,
the best way to protect our system against loss of state or processing in the
event of software (process-level) and hardware (node-level) crash faults.

Currently, the replicator supports the two canonical replication styles: active
replication and passive replication:3

– Active replication, also called the “state-machine approach” [10], is a tech-
nique where all the replicas are running and processing requests simulta-
neously on different nodes. The client has two choices for determining the
correct response:

• it can accept the first response received, if the server replicas are trusted
not to behave maliciously (which is the case in this paper);

• it can do majority voting on all the responses it receives, if Byzantine
failures may occur in the system [11].

– Passive replication, also called the “the primary-backup approach” [12], man-
dates that only one replica, called the primary, executes the application,
while one or several backups are waiting to take over when the primary fails.
Depending on how and when the state of the primary is transferred to the
backups, this replication style has two flavors:

• cold passive replication, where a backup is launched (by a watchdog)
only when the primary crashes, retrieving the state from a log saved on
shared permanent storage, and

3 In the future, we plan to include support for other replication styles [9] as well.
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• warm passive replication, where the backups are in a stand-by mode,
periodically receiving state updates from the primary. When the primary
crashes, a new primary is chosen from among the running backups, using
some deterministic algorithm.

We implement tunability by providing a set of low-level knobs that can adjust
the behavior of the replicator, such as the replication style, the number of replicas
and the checkpointing style and frequency (see Table 1). Note that versatile
dependability does not impose a “one-style-fits-all” strategy; instead, it allows
the maximum possible freedom in selecting a different replication style for each
CORBA process and in changing it at run-time, should that be necessary.

Replicated State. As the replicator is itself a distributed entity, it maintains
(using the group communication layer) within itself an identically replicated ob-
ject with information about the entire system (e.g., current view of the group
membership, resource availability at all the hosts, performance metrics, envi-
ronmental conditions). This object is needed for certain steps of the replication
process (such as failover) and for making consistent decisions when adapting to
the conditions in the environment. This is accomplished through MEAD’s de-
centralized resource monitoring infrastructure and through the Fault-Tolerance
Advisor [4], whose task is to identify the most appropriate configurations (in-
cluding the replication style and degree) for the current state of the system.

Adaptation Policies. There are various reasons why a system may need to
adapt its fault-tolerance properties. For example, an application may be multi-
modal and hence require different fault-tolerance in different modes, or runtime
profiling of an application may show different resource availability at different
times, and hence fault-tolerance policies would need to be adapted to this. These
scenarios require different approaches and hence different adaptation algorithms.

Our system can perform static as well as runtime profiling to adapt the fault-
tolerance of the system. It can monitor various system metrics and generates
warnings when the operating conditions are about to change. If the contracts for
the desired behavior can no longer be honored, the replicator adjusts the fault-
tolerant mechanisms to the new working conditions (including modes within the
application, if they happen to exist). This adaptation is performed automatically,
according to a set of policies that can be either pre-defined or introduced at run
time; these policies correspond to the high-level knobs described in Section 2.
For example, if the re-enforcement of a previous contract is not feasible, versatile
dependability can offer alternative (possibly degraded) behavioral contracts that
the application might still wish to have; manual intervention might be warranted
in some extreme cases. As soon as all of the instances of the replicator have agreed
to follow the new policy, they can start adapting their behavior accordingly.

Application of Adaptation Policies. The decision to act on an adaptation
policy must be applied consistently at all the nodes of the distributed system.
This can be accomplished in two ways: (i) applying the adaptation without any
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further communication, based on the replicated state, and (ii) sending a “switch”
message through a totally ordered multicast channel to initiate the change. With
the first strategy, all the decisions to re-tune the system parameters are made
in a distributed manner by a deterministic algorithm that takes the replicated
state as input. If each local change is the outcome of events that are consis-
tently delivered4 at all the nodes by the resource monitoring system, then no
further communication is needed; the decisions are based on data that is already
available and agreed upon, and virtual synchrony ensures that the adaptation
will be applied correctly. This has the advantage that the distributed adapta-
tion process is very swift. With the second strategy, the system sends a “switch”
message to all the replicators in a group; reception of this message triggers the
adaptation process. This is equivalent to running Consensus to decide when to
apply the change, and the “switch” message acts as a checkpoint in the totally
ordered stream of messages indicating a time when all the replicas have received
the same set of incoming messages and they are in the same state (we give a
more detailed example of this strategy in Section 4.1). This approach introduces
the delay of a totally ordered multicast between the time when an adaptation
decision is made and the time when it is applied.

There are cases when the first strategy cannot be applied. For example, if
the Fault-Tolerance Advisor runs as a separate process from the replicator, the
decision to change will be communicated through an IPC or a shared memory
mechanism. Since our system uses group communication to enforce consistency,
using a side-channel (such as IPC or shared memory) may lead to unrecog-
nized causality between the stream of requests and the adaptation decision and,
therefore, the change could be applied when the replicas are in inconsistent
states.5 Integrating the replicator, the resource monitoring and the adaptation
policy parsing in a single execution thread would remove this shortcoming, but
it would increase the overhead of processing the requests. This shows that there
is a trade-off between the overhead of the replicator in the average case and the
ability to apply the adaptation policies very fast.

High and Low Level Knobs. Using all the mechanisms described above, we
can implement the high and low level knobs mandated by versatile dependability.
The group communication package allows us to implement a low-level knob that
specifies the type of delivery guarantee the messages in the stream of requests
have. Depending on the nature of the application, different types of messages
may be used to achieve the target performance and dependability (for example,
a stateless server requires only reliable message delivery, while a stateful server
needs totally ordered messages if the requests contain state updates). Our repli-
cation mechanisms let us tune a number of parameters, such as the replication
style, the number of replicas and the checkpointing frequency. The aggressiveness

4 In the virtual synchrony model [13, 8], consistent delivery means that the same events
are delivered in the same order, but without any timeliness guarantees.

5 This does not happen when the requests do not update the state or when the replicas
are stateless.
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of resource monitoring and the strategy for applying adaptation policies define
other low-level knobs that can be adjusted to control the overhead and the speed
of the adaptation process. Finally, the high-level knobs are implemented on top
of all these low-level knobs, using the adaptation policies.

4 Implementation of Tuning Knobs

Our versatile dependability framework includes both knobs that can be used
off-line, to configure the system for particular requirements and workloads, and
knobs that adapt to conditions in the working environment at runtime. Below,
we estimate empirically the performance and the overhead of our framework
(Section 4), we show how to implement a low-level knob that allows us to switch
between an active and a passive replication style at runtime (Section 4.1), and
we show how to construct a high-level knob to tune the system scalability (Sec-
tion 4.2).

We have deployed a prototype of our system on a test-bed of seven Intel
x86 machines. Each machine is a Pentium III running at 900 megahertz with
512MB RAM of memory and running RedHat Linux 9.0. We employ the Spread
(v. 3.17.1) group communication system [7] and the TAO real-time ORB [14]
(v. 1.4). In our experiments, we use a CORBA client-server test application that
processes a cycle of 10,000 requests.

Performance and Overhead of the Replicator. In Figure 3, we examine the
raw overhead introduced by the replicator and the replication mechanism. We
compare here the latencies of the baseline application (without the replicator),
of an operating mode where the system calls are intercepted, but not modified
(with just the client, just the server, and both of them intercepted), and of the
active and warm passive replication styles (with one client and an unreplicated
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Fig. 4. Break-down of the average round-trip time

server to keep the results comparable). The vertical error bars from the figure
indicate the jitter measured in the corresponding experiment. We can see that
the replicator itself introduces little overhead, but the replication mechanisms
lead to increased latency and jitter.

Figure 4 shows a break-down of the average round-trip time of a request
transmitted through MEAD, as measured at the client (in a configuration with
one client and an unreplicated server). We notice that the transmission delay
through the group communication layer is the dominant contributor to the over-
all latency (in this paper, by latency we mean round-trip time). The application
processing time is very small because we are using a micro-benchmark; for a
real application, the time to process the request would be significantly higher.
The replicator introduces only 154 μs overhead on average, a fairly small figure
compared to the latencies of the group communication system and the ORB.

4.1 Runtime Adaptive Replication

The active and passive replication styles represent different trade-offs between
timeliness, recovery and resource usage. In general, active replication is faster in
responding to requests and in recovering from faults because checkpointing and
rollback are not needed, while passive replication uses more efficiently the re-
sources available, such as bandwidth and CPU cycles. Adaptive systems should
be able to modify replication styles on the fly, at run-time, in response to work-
load changes and application requirements. We implement a low-level knob to
switch between replication styles through three steps (see also the pseudocode
in Figure 5):

1. One or more replicas initiate the transition process by sending a “switch”
message to the entire replica group (duplicate messages are discarded);

2. Each replica, on receiving the “switch” message, starts enqueuing application
messages and broadcasts all the information needed by the other replicas to
update their local state and to perform the switch;
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I INITIATE adaptation:
send switch message

II PREPARE to switch:
/* Case 1: switch Warm Passive --> Active */

If (this replica == current Primary)
prepare to send one more checkpoint before switching

If (replica == current Backup)
prepare to wait for one more checkpoint after the switch

/* Case 2: switch Active --> Warm Passive */
Choose a new primary
Prepare to handle outstanding messages, if any, after the switch

III SWITCH to new replication style:
/* Case 1: switch Warm Passive --> Active */

New replication style = Active
If (this replica == previous Primary)

send one more checkpoint
If (this replica == previous Backup)

accept one more checkpoint
If (no checkpoints received &&

detect crash of previous Primary)
process all outstanding requests
in message queue (rollback)

else
continue

/* Case 2: switch Active --> Warm Passive */
New replication style = Active
If (this replica == new backup)

If (any outstanding requests in message queue)
process those requests and then
become completely passive

else
continue as backup

Fig. 5. Algorithm to switch between replication styles

3. Each replica, on receiving all the information needed to ensure a consistent
state, updates its internal state and assumes its role in the new replication
style.

The second step is different depending on the direction of the switch: when
switching from warm passive to active replication, the backups must synchronize
their states with the primary before they can start processing requests. In the
case of a crash of the primary, the backups can restore a consistent state by
replaying the messages received since the last checkpoint prior to the crash.
When switching from active to warm passive replication, a new primary must
be selected and the other replicas become backups after finishing to service their
current requests.
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The “switch” messages are sent through a totally ordered, reliable multicast
channel using our group communication layer (see Section 3.1), which makes our
algorithm tolerant to the crash of any replica. Since fault notifications are ordered
consistently with respect to the “switch” and the other messages, the remaining
non-faulty instances of the replicator can always determine at which point in the
algorithm the crash has occurred and continue the work from that point until
the replication style switch is complete. The protocol described in Figure 5 can
tolerate the crash failure of either the primary or of any of the backups.

Our adaptive replication style takes the middle ground between the fast,
resource-hungry active replication and the slower, resource-efficient passive repli-
cation. Figure 6 shows how we can adapt the replication style in response to the
load of the system. Since active replication can handle higher request arrival
rates than passive replication, in this example we switch whenever the request
rate increases above a certain threshold. This simple adaptation policy selects
the replication style that is appropriate for the measured request arrival rate at
the server.

The observed delays required to complete the switch are comparable to the
average response time, and they are negligible at high loads, such as the ones
that trigger the adaptation. It is interesting to note that the request arrival rate
observed at the server is 4.1% higher in the case of adaptive replication than
when using static passive replication with the same workload. This is because
active replication can respond faster under such high loads; clients waiting for
the replies receive them faster and can send new requests sooner than in the
previous case (there is no need for quiescence and checkpointing). This speed-
up effect allows the servers to regulate the load imposed by the clients and to
increase the throughput of the replicated service.

The adaptive replication knob provides the ability to change the replication
style whenever required, either off-line, before the application is launched, or
online, during its execution. This flexibility allows us to tune with precision
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Implementing a “Scalability” Knob. We would like to implement a knob
that tunes the scalability of the system under bandwidth, latency, and fault-
tolerance constraints. In other words, given a number of clients Ncli, we want
to decide the best possible configuration for the servers (e.g., the replication
style and the number of replicas). Let us consider a system with the following
requirements:

1. The average latency shall not exceed 7000 μs;
2. The bandwidth usage shall not exceed 3 MB/s;
3. The configuration should have the best fault-tolerance possible (given re-

quirements 1–2);
4. Among all the configurations i that satisfy the previous requirements, the

one with the lowest:

Costi = p
Latencyi

7000μs
+ (1 − p)

Bandwidthi

3MB/s

should be chosen, where Latencyi is the measured latency of i, Bandwidthi

is the measured bandwidth and p is the weight assigned to each of these
metrics.6

This situation is illustrated in Figure 8. The hard limits imposed by re-
quirements 1 and 2 are represented by the vertical planes that set the useful
configurations apart from the other ones. For each number of clients Ncli, we
6 The cost function is a heuristic rule of thumb (not derived from a rigorous analysis),

that we use to break the ties after satisfying the first 3 requirements; we anticipate
that other developers could define different cost functions. Here, we use p = 0.5 to
weight latency and bandwidth equally.

Fig. 8. High level knob: scalability
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select from this set those configurations that have the highest number of server
replicas to satisfy the third requirement. If, at this point, we still have more than
one candidate configuration, we compute the cost to choose the replication style
(the number of replicas has been decided during the previous steps). The result-
ing policy is represented by the thick line from Figure 8, and its characteristics
are summarized in Table 2.

Note that, while for up to four clients the system is able to tolerate two crash
failures, for five clients only one failure is tolerated because no configuration
with three replicas could meet the requirements in this case. This emphasizes
the trade-off between fault-tolerance and scalability under the requirements 1–4,
which impose hard limits for the performance and resource usage of the system.
Furthermore, since in both the active and passive replication styles, at least one
of the metrics considered (i.e., bandwidth and latency) increases linearly, it is
likely that, for a higher load, we cannot satisfy the requirements. In this case, the
system notifies the operators that the tuning policy can no longer be honored
and that a new policy must be defined in order to accept any more clients.

5 Discussion

Scalability is only one possible high-level knob that versatile dependability can
tune; we could similarly implement other high-level knobs such as availability,
reliability, sustained throughput, etc. In fact, each one of the requirements spec-
ified in Section 4.2 probably corresponds to a high-level knob that can be tuned
independently. Achieving a separation of concerns between these knobs, by re-
ducing the influence they have on each other, is therefore an important research
challenge for the future of versatile dependability.

However, in its current stage versatile dependability rises to the challenge of
enabling adaptive systems with a tunable range of reliability and performance
guarantees. Figure 9 displays the trade-off between the active and passive repli-
cation styles in the dependability design space (which was introduced in Fig-
ure 1). The data set displayed here is the same one from Figure 7, where the
fault-tolerance, performance and resource usage of each configuration are nor-
malized to their maximum values. We can see that each of the two replication
styles corresponds to a larger region in this space and includes multiple possible

Table 2. Policy for scalability tuning

Ncli 1 2 3 4 5
Configurationa A (3) A (3) P (3) P (3) P (2)
Latency [μs] 1245.8 1457.2 4966 6141.1 6006.2

Bandwidth [MB/s] 1.074 2.032 1.887 2.315 2.799
Faults Tolerated 2 2 2 2 1

Cost 0.268 0.443 0.669 0.825 0.895

a Active/Passive (number of replicas); e.g., A(3) = 3 active replicas.
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Fig. 9. Active and passive replication in the dependability design space

configurations of the system. The two regions are non-overlapping; however, by
using low and high-level knobs such as the ones described above, we can position
the system in any configuration desired.

Versatile dependability is essential for long-running applications that can-
not be stopped (e.g., during a space flight), but that have several modes of
operation with different resource and performance requirements (e.g., simula-
tion/ training and mission modes). The high performance provided by active
replication can be used when gathering data and performing actuation must be
done within narrow time limits, when there are limited windows of opportu-
nity and data is critical, because of the faster response and recovery times. The
more conservative passive replication is needed when the resources are scarce
and cannot be wasted by running several active replicas in parallel. When both
these conditions are present (e.g., in a network of sensors), the infrastructure
must be able to tune the replication style to run in a resource-conservative mode
most of the time, and to switch to the high-performance mode only during
the limited window of opportunity. The ability to express the tuning problem
in terms of external properties (the high-level knobs), rather than internal pa-
rameters of the system (the low-level knobs), facilitates the configuration and
management of complex distributed systems because it does not require a de-
tailed knowledge of the system’s implementation and the internal fault-tolerant
mechanisms used.

6 Related Work

Among the first attempts to reconcile soft real-time and fault-tolerance, the
Delta-4 XPA project [15] used semi-active replication (the leader-follower model)
where all the replicas are active but only one designated copy (the leader) trans-
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mits output responses. In some conditions, this approach can combine the low
synchronization requirements of passive replication with the low error-recovery
delays of active replication. The ROAFTS project [16] implements a number of
traditional fault-tolerant schemes in their rugged forms and operates them un-
der the control of a centralized network supervision and reconfiguration (NSR)
manager.

Traditionally, research on adaptive software systems has focused on either
system architectures to support the adaptation process [17, 18], or on domain-
specific strategies for adaptation under given constraints encountered in practical
situations [19, 20]. The former approach does not make use of any domain knowl-
edge about the application and, thus, only enables hooks for adaptation while
leaving the actual implementation details to domain experts; the latter approach
usually focuses on one particular (often domain-specific) instance of the problem
and does not build a generic framework around the proposed solution.

For instance, the AQuA framework [19] proposes a technique to support
graceful QoS adaptation by requiring applications to specify the criticality of
their timeliness and consistency requirements in probabilistic terms. This prob-
abilistic QoS model can be implemented through replication and a combination
of virtual synchrony and lazy propagation of updates that effectively provides
a tunable range of consistency guarantees. Based on the client’s request and
the measured conditions in the environment (e.g., current network latencies and
replica staleness), the framework detects whether the client’s QoS specification
can be met with the required probability. In this case, AQuA automatically se-
lects the subset of replicas to service the invocation using a greedy algorithm.
Note that, in our terminology, AQuA’s tunable QoS guarantees are analogous
to a high-level knob.

However, in some cases, the QoS requirements and the environmental condi-
tions can change so drastically that a switch to a completely different algorithm
is necessary. Cactus [17] proposes a generic software architecture for adaptive
systems based on fine-grained software modules that implement abstract QoS
properties. The adaptation framework uses fitness functions associated with each
module to determine the best one for the current requirements and execution
environment. The adaptive action is performed after all the distributed compo-
nents have agreed to select the corresponding software modules in a consistent
way. This adaptation mechanism is similar to a low-level knob from our frame-
work, such as the one described in Section 4.1.

It has also been noted that hybrid replication strategies can be conceived,
and these can be combined with caching in order to give more flexibility to
the application designer [21]. For example, some of the replicas can be active
and some can be passive in order to increase the scalability of the system while
keeping low fail-over delays. There are possibly 50–100 such hybrid strategies
which give a much finer control of the operational parameters of the system. An
analysis of all these combinations, emphasizing the most useful ones of them,
would result in a better coverage of the presently very sparsely populated space
of replication strategies.
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For example, the DARX framework [22] is aimed at providing adaptive fault-
tolerance for multi-agent software platforms. This infrastructure associates a
replication policy with each agent, and the replication style and degree are ad-
justed according to the importance of each agent with respect to the rest of the
application. This derives from a fundamental assumption that the importance
of an agent evolves over time and so do its fault-tolerance requirements.

An offline approach to selecting the appropriate trade-off between fault-
tolerance and real-time guarantees was adopted by the MARS project [23] and
its successor, the Time-Triggered Architecture (TTA) [24] which are based on
time-triggered protocols with strong temporal predictability. Fault-tolerance is
achieved in the TTA by using a static schedule (created at design time) that
allows enough slack for the system to be able to recover when faults occur. This
approach does not provide a generic solution because it delegates the responsibil-
ity for reconciling fault-tolerance and real-time requirements to the application
designer who establishes the static schedule.

7 Conclusions

Tunable software architectures are becoming important for distributed systems
that must continue to run, despite loss/addition of resources, faults and other
dynamic conditions. Versatile dependability is designed to facilitate the resource-
aware tuning of multiple trade-offs between an application’s fault-tolerance and
QoS requirements. We propose the concept of “knobs” as a convenient architec-
tural feature that helps designers reason about the system trade-offs and that
expresses the tuning process in terms of externally-observable properties of the
system. The architecture described in this paper provides abstract high-level
knobs for tuning system-level properties such as scalability and low-level knobs
for selecting implementation choices, such as the replication style. We detail
the implementation of such knobs based on empirical observations, and present
the expanded trade-off space covered by our current implementation of versatile
dependability.
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Abstract. Connectors and connector wrappers explicitly specify the
protocol of interaction among components and afford the reusable appli-
cation of extra-functional behaviors, such as reliability policies. Ideally,
these specifications can be used for more than just modeling and analysis.
We are investigating how to use them in the design and implementation
of the middleware substrate of a distributed system. This paper reports
our experience elaborating connectors and connector wrappers as in-
stantiations of a feature-oriented middleware framework called Theseus,
which supports the design of asynchronous distributed applications. The
results of this case study indicate that the relationship between specifi-
cation features and implementation-level features is not one-to-one and
that some specification features have complex, often subtle, manifesta-
tions in Theseus’ design. This work reports the lessons learned designing
these strategies and suggests techniques for designing middleware frame-
works and composition tools that more explicitly reify and expose the
features specified by connectors and connector wrappers.

1 Introduction

Increasingly, distributed computing systems are deployed in volatile environ-
ments in which network connectivity is sporadic and unreliable. In response, a
variety of reliability policies have been devised to shield users from the effects
of this volatility. For example, automatic retry detects when a service request
fails and automatically resends that request rather than propagating the excep-
tion to the client program. More sophisticated policies, such as failover, exploit
redundant servers: When a request to one server fails that request is automati-
cally forwarded to another rather than propagating the exception to the client
program. In each case, an unreliable service is promoted to one that is reliable
without altering the implementation of the unreliable service. Consequently, such
policies tend to be incorporated into the middleware layer by wrapping an un-
reliable middleware implementation with code that intercepts service requests
and performs the extra functionality.

To understand how to use wrappers to apply and compose reliability policies,
Spitznagel and Garlan [1] developed a technique based on a formal behavioral
model of architectural connection [2]. These connector wrappers impose policies
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on an existing connector specification by extending and/or restricting its observ-
able behaviors. Moreover, each connector wrapper has an implementation coun-
terpart that can be applied to incorporate the policy into an existing middleware
implementation. These implementation wrappers compose with the flexibility of
their specification counterparts by treating the underlying middleware as a black
box. Unfortunately, the resulting implementations may incur redundancies and
inefficiencies that are unacceptable on the resource-constrained devices that are
most often exposed to volatile environments.

This paper describes an alternative implementation of connector wrappers
as reusable refinements rather than black-box wrappers. Reusable refinements
appeal to an algebraic model of software composition called AHEAD [3] and are
similar to ML functors [4] and mixin layers in C++ [5]. Refinements compose
functionally, just like wrappers; however refinement composition is more fine
grain and thus affords a tighter integration that enables the reuse and extension
of existing abstractions. Designers may thus customize a base middleware with
reliability strategies by applying refinements in a manner analogous to the ap-
plication of connector wrappers, and the resulting configurations will not exhibit
the redundancy and inefficiency introduced by implementation wrappers.

Our results exploit the fact that reliability strategies often employ the same
design abstractions that are used to implement basic middleware services. For
instance, many middleware systems use the asynchronous completion token pat-
tern [6] to demultiplex asynchronous operation requests and responses. This pat-
tern is also used to implement a strategy for warm failover [7] whereby clients
copy outgoing requests to a redundant backup server, which silently serves each
request in parallel with the primary. Were such a strategy implemented using
a wrapper, the wrapper would require logic for demultiplexing requests and re-
sponses with the backup server even though such logic exists in the underlying
middleware. Further, some reliability strategies may need to suppress behav-
iors, such as suppressing the responses sent by a server that is intended to play
the role of a silent backup. Wrappers suppress behavior by masking the observ-
able effects rather than forestalling the behavior itself. Using refinements, both
duplication of functionality and masking of behaviors can be avoided.

We believe that implementing reliability strategies as refinements will en-
able system architects to easily construct efficient middleware solutions subject
to a variety of reliability policies. To validate this claim, we implemented and
applied a set of reliability refinements to Theseus, which is an asynchronous
middleware implementation that we designed using the AHEAD model. In prior
work, we described three reliability refinements and showed that these exhibit
the compositional properties as their specification counterparts [8]. We have since
implemented other refinements, including one for warm failover that is useful for
comparing our approach with black-box wrappers. In the sequel, we describe the
design of Theseus and how refinements compose to produce new middleware that
incorporates various reliability policies. We then compare our refinement-based
implementation of warm failover to the wrapper-based design of [9].
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2 Background

By way of background, we first introduce the use of wrappers to enhance relia-
bility in distributed systems and the connector-wrapper formalism, which mod-
els the behavior of these wrappers. Wrappers and connector wrappers exhibit
a useful structural correspondence between implementation and specification;
however wrappers also incur redundancies and inefficiencies that are unaccept-
able to resource-constrained devices. We contend that reliability enhancements
can be implemented so as to exhibit the same correspondence with connector
wrappers but without incurring the redundancies and inefficiencies of wrapper-
based implementations. The key is to implement the enhancements as reusable
refinements under the AHEAD model of composition, which supports the def-
inition of modules whose implementation abstractions are left open for further
refinement by other modules under composition. This section concludes with a
brief introduction to the AHEAD model.

2.1 Reliability-Enhancing Wrappers

Software architects often wish to augment communication among the compo-
nents in a distributed system to incorporate extra functionality, such as logging,
encryption, and even strategies for enhancing reliability in the face of network
failures. Augmentation is accomplished by intercepting messages that cross the
boundary between client components and the communication or middleware
layer. Once intercepted, these messages are then either dropped, transformed
and then forwarded to their original destination, or routed to another destina-
tion. Interception has proved useful for adding reliability to a variety of system
calls (C.f., [10,11]). The technique is now supported directly in modern middle-
ware systems (C.f., CORBA’s portable interceptor interface [12,13]).1

This paper is concerned with reliability enhancements that are implemented
using wrappers, which serve to both mediate client access to a service as well as
augment that service with extra-functionality, as with interception. To preserve
the original interface, these wrappers are implemented based on the proxy pat-
tern [15]2. As an example, consider the addition of logging and data encryption
to messages sent by client components to a remote server component. Suppose
the class MiddlewareStub represents the type of the client-side stub object, such
as might be generated from an IDL specification of the server component. The
additional functionality is implemented by a hierarchy of wrapper objects that
conform to the class model in Figure 1. Commensurate with the wrapper pat-
tern, each class implements a common interface, which in this example is called

1 A powerful model of interception is captured by the composition-filters object model,
which allows designers to deploy filters that intercept and drop, modify, or reroute
messages among arbitrary objects in a system [14].

2 Readers familiar with GoF design patterns will notice wrapper is a synonym for the
adapter and not the proxy pattern; we use the term wrapper for consistency with
Spitznagel’s wrappers, which also implement the proxy pattern[9].
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LoggingTransformation EncryptionTransformation
<<wrapper>> <<wrapper>>

MiddlewareStub

MiddlewareStubIface
<<interface>>

Fig. 1. Adding functionality using wrappers

MiddlewareStubIface, and the two wrappers implement their methods by del-
egation. Software architects typically use wrappers to augment middleware with
new functionality, to suppress existing behaviors, or to mask faults.

While easy to implement, wrappers (and interception techniques generally)
suffer from two problems. First, components of the original system (that being
wrapped) may be “orphaned” when their behaviors are suppressed in favor of
behaviors introduced via interception and wrapping. Such orphans, even though
no longer actively contributing to the behavior of the system, remain in place
and continue to consume resources, both computational and spatial. Second, the
extra functionality may incur redundancies and inefficiencies that are unaccept-
able on the resource-constrained devices that are most often exposed to volatile
environments. In the case of wrappers, these redundancies owe to the treatment
of the service being wrapped as a black box whose internal resources (i.e., those
that might be reasonably reused by the extra functionality) are not accessible
to the wrapper. Interception-based techniques suffer a similar problem.

To overcome this obstacle requires the ability to reconfigure a base system
when augmenting it with extra functionality. The earliest work in this regard
uses static recomposition based on object-oriented frameworks, the most notable
of these being Schmidt’s ACE framework [16]. More recent work has investigated
the development of software modules that, when composed with a base system,
are able to reconfigure that system. Such compositions must be able to refine
existing components, including those hidden behind an opaque API, to support
extra-functional behaviors or replace them with components that do support
the desired behaviors. More recent work (C.f., [17,18]) applies dynamic recom-
position to introduce reliability enhancements. In these cases, reflection and/or
meta-object protocols are used to reconfigure the original application to use the
components that best fit the environment at hand. Further still, such techniques
have also been combined with class loading technologies, in particular the JBoss
extensible middleware platform, to completely add and/or remove components
from a running system [19].

2.2 Connector Wrappers

The term connector refers to a mechanism for composing architectural compo-
nents [20]. Connectors abstract communication mechanisms and protocols, such
as procedure calls, remote procedure calls, pipes in a pipe-and-filter system, and
many of the communication services that are generally referred to as “middle-
ware”. More abstractly, a connector represents a pattern of interaction among
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a set of components, called the roles of the connector. Allen and Garlan de-
veloped a formal model of connectors as stylized CSP specifications, thereby
enabling an architect to rigorously specify an architecture as the composition of
components and connectors and use formal analysis tools to reason about the
resulting behavior [2].

To facilitate reasoning in the presence of wrappers, Spitznagel and Garlan
developed a theory of connector wrappers, which are stylized CSP specifications
designed to compose with a connector specification to yield a new connector,
whose behaviors are an extension or restriction of the original [1]. Connector
wrappers are useful for specifying different strategies for implementing reliabil-
ity policies, such as retry and failover, in isolation without regard to the details of
a particular connector. The basic idea is to introduce (via parallel composition)
additional processes that synchronize with messages at the component–connector
interface to precisely model the behavior of the aforementioned wrapper mod-
ules. Because connector wrappers faithfully model the structure and behavior of
wrappers, an architect may specify a new connector as the composition of one
or more connector wrappers with some connector and then semi-automatically
generate a conforming implementation. Spitznagel’s system provides generation
tools that implement this capability.

Unfortunately, connector wrappers cannot yet utilize reconfiguration-based
mechanisms, which generally do not adhere to an algebraic model of composition.
The next section describes a model of composition that is algebraic in nature
and that supports fine-grained recomposition of the base system, allowing for
both reuse of abstractions and the avoidance of orphaned components.

2.3 AHEAD

AHEAD is an algebraic model of software composition in which complex, feature-
rich programs are synthesized from base programs by applying reusable refine-
ments [21]. Here, a base program is a collection of classes, and a refinement is a
collection of classes and/or class fragments, which can be applied to extend an
existing program with new functionality by using and/or refining the classes de-
fined by that program. AHEAD treats base programs and refinements as layers.
A base program is a stand-alone layer or constant (i.e., the layer contains no
class fragments) and a refinement is a parameterized layer (i.e., layer that must
“plug in” to another, subordinate layer).

The composition of AHEAD refinements and simple programs is depicted
visually using diagrams such as Figure 2(a). This figure illustrates the refine-
ment of a base program (const). Here, the inner-most boxes are classes or class
fragments. The solid rectangles demarcate refinements. The dotted lines from
one class to another indicate the refinement of a class with the code and data
in a class fragment; for example, bconst is refined by bf1. Because const is the
bottom-most layer, it contains only classes and not class fragments.

Moving up one level, f1 is a refinement whose constituents refine two classes,
and that adds a new class e which uses classes from the subordinate layer.
Composing this refinement with const effectively synthesizes a new collaboration
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Fig. 2. Layered refinement in AHEAD

that implements that of const augmented by the feature implemented by f1 and
results in a new, composite layer we will refer to as comp1. This composition is
specified textually via the type equation comp1 = f1〈const〉. Moving up another
level, f2 comprises two class refinements, which collaborate to implement another
new feature. In this example, f2 refines comp1, thus creating a new layer that
implements the functionality of const augmented with the features of both f1
and f2. The resultant type equation is comp2 = f2〈f1〈const〉〉.

Figure 2 applies one final refinement, l1, which contains complete classes and
no fragments. While l1 may appear to be a constant, it is a refinement in the sense
that it adds new abstractions (gl1 and hl1) that use classes in the subordinate
layer. For this type of refinement, we will will often simply say layer l1 uses
comp2. The uppermost layer (comp3, in bold) illustrates the final composition
that implements this collaboration. Notice that the classes in this uppermost
layer are the most refined of each subordinate layer, as indicated by the grey
boxes.

AHEAD also employs a type system for reasoning about, classifying, and
codifying the relationships between layers. In this type system, layers that share
a common interface are elements of a realm, and that common interface can be
thought of as the realm type. For example, the layers of Figure 2(a) and their
relationships are expressed in Figure 2(b). In this figure, const is a constant of
realm X whose classes implement the interfaces that comprise the type of this
realm, namely the class interfaces a, b, c, and d. As we saw earlier, f1 and f2
refine the layers below them; here, this is formalized by the presence of a realm
parameter that conveys that these layers augment layers of type X.

Based on this small set of layers, many different compositions may be instan-
tiated, e.g., f1〈const〉, f2〈f1〈const〉〉, and l1〈f2〈const〉〉. Each of these instantiations
synthesizes a set of classes, whose instances collaborate to implement all the fea-
tures of the base program and each of the refinements. We call such a collection
of collaborating objects a configuration. Notice that some type equations denote
new refinements rather than whole programs. For example, the type equation
cf1 = f1〈f2〉 denotes a valid composition, but because the class refinements of f2
depend on classes provided by its realm parameter, cf1 is simply a composite
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refinement; it cannot be instantiated as specified to produce a configuration of
collaborating objects. When a composition may not denote a complete program,
we may opt to use the more general functional composition operator (◦). For
example, we could rewrite the definition of cf1 as cf1 = f1 ◦ f2.

As noted in the Section 1, reliability strategies do not always map to a single
layer; rather, they are often implemented by a collection of layer refinements
that collaborate to implement a complete reliability strategy. For instance, con-
sider a reliability strategy that is implemented by the collaboration of l1 and
f1. In AHEAD, such collaborations may also be represented by {l1, f1}, which
is a collective (set of layers) that represents the collaboration implemented by
this composite refinement. Under AHEAD, a model is a set of constants and
refinements (each of which may themselves be collectives) whose constituents
are the building blocks of a product line[21].

In our example, such a product line would comprise configurations repre-
sented by, e.g., const, f1〈const〉, l1〈f2〈const〉, and so on. A model of this product
line is

M = {{const}, {f1}, {l1, f2}, {l1, f1} . . .} (1)

Here, M comprises a constant ({const}) and a set of refinements (the remaining
collectives). A member of this product line is instantiated by

rs = {l1, f1} ◦ {const} (2)
= {l1, f1 ◦ const} (3)
= l1 ◦ f1 ◦ const (4)
= l1〈f1〈const〉〉 (5)

Using collectives, we can represent a reliability strategy as a single unit that
can be applied to a base program even when that unit comprises multiple re-
finements. We use such a model and its constituent collectives to mirror the
application of connector wrappers, each of which corresponds to a collective
that implements a reliability strategy, to connectors, i.e., base middleware im-
plementations. This model of reliable middleware is presented in Section 4.

3 Theseus

One of the goals of our approach is to augment middleware services with relia-
bility by refining the abstractions used in the implementation of these services
rather than by treating the services as a black box and wrapping them with extra
functionality. To accomplish this goal requires a middleware framework whose
design exposes these major abstractions and makes them available for further
refinement. We developed a middleware framework called Theseus that is or-
ganized according to an AHEAD model. This section describes this model and
shows how it is used to synthesize custom asynchronous middleware services that
support a variety of different reliability policies. The Theseus model comprises
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two realms: MSGSVC, whose layers implement a variety of different message ser-
vices, and ACTOBJ, whose layers implement variants of the distributed active
object pattern. Most of the layers in these realms implement different reliabil-
ity strategies (or low-level services that support different reliability strategies).
Using Theseus, an architect can easily customize middleware services to sup-
port specific reliability policies without the duplication and efficiency burdens
inherent in the use of wrappers.

3.1 Message Service

In Theseus, the message service provides queue-like communication abstractions
that implement a simple, reliable3 message-oriented middleware. A client of the
message service sends data by enqueuing a message in a peer’s inbox (which typ-
ically resides in a separate address space on a remote machine) and receives data
by retrieving messages from its inbox. The sending end of the message service is a
peer messenger whose interface is specified by PeerMessengerIface; the receiv-
ing end is a message inbox whose interface is specified by MessageInboxIface
(Figure 3). An inbox is bound to a universal resource identifier (URI) and listens

public interface MessageInboxIface {
public Serializable retrieveNextMessage ();
public LinkedList retrieveAllMessages ();
public boolean hasMessages ();
public int numQueued ();

}

public interface PeerMessengerIface {
public void sendMessage ( Serializable msg );
public void setURI ( String URI );
public ResourceIdentifierIface getURI ();
public void connect ();

}
Fig. 3. Interfaces in the message service

for, receives, and queues messages sent to that URI. These details are hidden
by MessageInboxIface, through which the inbox client treats the network like
a queue, receiving messages with calls such as retrieveAllMessages. A peer
messenger connects to an inbox, given its URI, and sends messages (in our case,
any serializable object) by invoking sendMessage.

Figure 4 depicts the MSGSVC realm, whose layers define and refine these
abstractions. The constant in this realm is rmi4, which comprises classes that
3 In the sense that it is built atop a connection-oriented transport such as TCP.
4 For convenience, we built our message service atop RMI; the message service ab-

stractions are general and may also be implemented atop object streams, TCP, or
any other connection-oriented transport.
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MSGSVC = { rmi, idemFail[MSGSVC], bndRetry[MSGSVC],
indefRetry[MSGSVC], cmr[MSGSVC], dupReq[MSGSVC] }

Fig. 4. Message service realm layers

rmi PeerMessenger

PeerMessenger

MessageInbox

PeerMessenger MessageInbox

bndRetry

bndRetry<rmi>

Fig. 5. Visual stratification of bndRetry〈rmi〉

implement the most basic form of these abstractions. The remaining layers
are reliability-enhancing refinements, which we will describe as the need arises.
One such refinement is bndRetry (bounded retry), which augments an existing
PeerMessenger5 to, in the event of a communication failure, suppress the com-
munication exception(s) and retry some number of times (maxRetries > 0)
before giving up and throwing the exception.

Figure 5 shows the layered representation of an assembly that applies bndRetry
to the basic message service rmi. In Figure 5, bndRetry refines classes of the
rmi layer, namely, PeerMessenger. In the remainder of our diagrams, the grey
classes are the most refined, and the layer in bold represents the client’s view
of the assembly. Clients always use the most refined implementation of an in-
terface (indicated by the arrows); in the case of the PeerMessengerIface, the
most refined implementation is that of bndRetry. Because the bndRetry layer
did not refine MessageInbox, the rmi implementation remains the most refined
implementation of MessageInboxIface.

3.2 Active Objects

Theseus’ second realm is called ACTOBJ because its layers define classes and
class refinements that implement different variations of the distributed active
object pattern [6]. An active object is an object that has its own thread of con-
trol (the execution thread), listening for operation requests and executing the
corresponding operations when the requests arrive. A complete operation ex-
ecution in this model has three phases: invocation and queueing, dispatching
and execution, and returning results. In the first phase, a proxy (in the sense
of [15]) marshals the invocation into an operation request (referred to simply

5 An implementation of PeerMessengerIface; our classes follow the convention that
interfaces are suffixed by “Iface” and the corresponding implementation is not.
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as a request) and queues it on an activation list. The execution phase is initi-
ated by the scheduler, which is a loop (running in the execution thread) that
dequeues requests from the activation list to be executed. In the simplest case,
the scheduler dequeues these in FIFO order. Once dequeued, requests are passed
to the dispatcher to be invoked on the servant, which is an object that actually
implements the behavior modeled by the active object [6]. When the servant
completes this invocation, the results are returned to the client.

The distributed active object pattern follows the same basic architecture,
except that the operations invoked by a client are executed in an object that lives
in a separate address space. Middleware stubs and skeletons insulate the client
from the details of communication with the remote active object [6]. The stub
behaves like the proxy, except rather than queuing the requests on an activation
list, they are sent via some form of inter-process communication (IPC) to the
skeleton, which resides in the same address space as the servant. This skeleton
comprises a scheduler that schedules requests to be executed in the execution
thread. Once a request has been dequeued, unmarshaled, and executed, the
results are then sent back to the client via IPC.

The ACTOBJ realm type comprises interfaces, such as SchedulerIface and
DispatcherIface, whose instances collaborate to implement distributed ac-
tive objects. The layers that implement and refine these are shown in Figure
6. Notice this realm contains no constants. The core layer is parameterized by

ACTOBJ = { core[MSGSVC], respCache[ACTOBJ], eeh[ACTOBJ], ackResp[ACTOBJ] }

Fig. 6. Active object realm layers

the MSGSVC realm. Among others, core contains two classes, StaticDispatcher
and FIFOScheduler, which implement the DispatcherIfaceand SchedulerIface
interfaces respectively, and which are designed to use subordinate services that
are defined in the MSGSVC realm type. Nothing in the implementation of class
FIFOScheduler (respectively StaticDispatcher) depends on the particular im-
plementation of the MessageInboxIface (respectively PeerMessengerIface) in-
terface. Thus, core is “parameterized by” the MSGSVC realm.

3.3 Synthesizing Middleware Services

To create a set of middleware services, we instantiate objects from the classes
defined in the assembly core〈rmi〉, which is our most basic middleware assembly
and the one that is refined to create all of the other variants. Here, the message
service is refined to include core’s abstractions for building active objects, as is
depicted in Figure 7. Notice that none of the classes in core refine any of those
in the rmi layer. Rather, core uses rmi’s concrete classes in the same sense that
FIFOScheduler uses MessageInboxIface. Notice also that the rmi classes are
still visible in the assembly and are thus available for further refinement, as
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are the classes in core. That the classes defined in a subordinate layer remain
visible to superior layers allows the functionality defined in these superior layers
to tap into and reuse the basic abstractions used to implement the subordinate
functionality.

To illustrate how this visibility accommodates refinement, consider a bounded
retry policy that prescribes (1) suppressing errors, (2) performing a bounded
number of retries, and (3) throwing an exception if these retries fail. Our basic
middleware, specified by core〈rmi〉, comprises classes that implement the min-
imum functionality necessary to implement active objects; accounting for any
type of exceptional conditions is not part of that minimal functionality. Now
consider how this basic middleware assembly must be modified to implement a
bounded retry strategy: The first two requirements are met by the bounded retry
augmentation of the message service. To meet the third requirement, we must
augment the stub, which does not account for exceptions, to properly trans-
form internal exceptions thrown by the message service into those declared to
be thrown by the active-object interface. To this end, we refine the pertinent
classes in the active object layer.

The stub is implemented by an instance of the active object’s interface that
performs the first phase of invocation marshaling. To create such an instance of
an arbitrary active object interface, we generate these instances using Java’s Dy-
namic Proxy Framework [22]. Such an instance is referred to as a dynamic proxy
and is generated by a static factory method that is parameterized by a metaob-
ject representation of the interface 6 and an instance of the InvocationHandler
interface, which will be used by the dynamic proxy to process operations invoked
on the proxy. The dynamic proxy itself is an object that marshals invocations
of its operations into two objects: an instance of class Method that represents
the operation invoked and an array of Objects that are the parameters of this
invocation, which it immediately passes to its instance of InvocationHandler
for processing.

The core layer defines a class TheseusInvocationHandler that is
responsible for completing invocation marshaling. This class implements the
InvocationHandler interface; thus its instances can be passed to the static
factory method that generates the dynamic proxy. At run-time, these instances
use an instance of class PeerMessengerIface to send the resultant request to

6 i.e., an instance of class Class in Java used to generate the dynamic proxy itself.
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the skeleton of the active object. In the minimal assembly, i.e., core〈rmi〉, the in-
vocation handler does not account for exceptions. In the more realistic case, the
underlying network may fail or the server on which the active object resides may
crash; in either event, the peer messenger that is used by the invocation handler
will throw an IPCException7. To accommodate this possibility, we refine the
TheseusInvocationHandler to transform these exceptions into the exceptions
that the active object’s interface declares in its throws clause.

The refinement that performs this transformation is eeh (exposed exception
handler) and is depicted in Figure 6. A minimal middleware augmented by eeh
is expressed by eeh〈core〈rmi〉〉. Adding bounded retry to the message service
completes the functionality specified by the bounded retry policy; the configu-
ration then becomes eeh〈core〈bndRetry〈rmi〉〉〉. The layers that implement this
configuration are shown in Figure 8.

3.4 Efficiency Improvements in Bounded Retry

To see how our design forestalls the duplication that arises when implementing
reliability strategies via wrappers, consider a wrapper-based implementation of
the bounded retry policy. The wrapper would have to be applied to the server
stub, i.e., the object returned by RMI’s Naming.lookup call. Upon communica-
tion failure, a remote exception is propagated from the underlying transport up
to the wrapper, where it is caught and responded to by invoking the operation
on the base stub again. Notice that in this scenario, each retry subsequent to the
initial failure must perform the entire client side invocation process, including
the re-marshaling of the same invocation.

In Theseus, by contrast, the class of the object that is used to send the
marshaled invocation, i.e., the class that implements the PeerMessengerIface

7 The astute reader will notice that PeerMessengerIface does not declare any excep-
tions; IPCException is an unchecked runtime exception that need not be declared in
a throws clause. To avoid polluting the interfaces of realm types with throws decla-
rations for checked exceptions they may or may not have to handle, we encapsulate
all checked exceptions in runtime exceptions, placing the responsibility for managing
such exceptions on the developer.
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interface, is available for further refinement. And indeed, the bndRetry layer
refines this class with the retry logic, thereby placing the retry logic “beneath”
the marshaling logic. Consequently, this implementation avoids the cost of re-
marshaling for each retry. The composite (bold) layer in Figure 8 depicts the
synthetic collaboration whose participants include the eeh-augmented invocation
handler and the bndRetry-augmented peer messenger. Instances of these refined
classes collaborate to implement our bounded retry strategy. In the next section,
we describe a model that facilitates applying such collaborating refinements to
a middleware as a single unit.

4 An AHEAD Model of Reliable Middleware

In the previous section we implemented a strategy for bounded retry in two
phases. The first phase refined the message service to suppress exceptions and
retry some bounded number of times before giving up. The second phase refined
the active object layer to transform internal exceptions into those declared by
the active object interface, i.e. those a client of the stub would expect based on
the active object’s interface. Consequently, the functionality associated with the
bounded-retry connector wrapper manifests not as a single layer, but rather as
a collective that comprises two layers. In fact, most of the connector wrappers
specified in Spitznagel’s thesis cannot be implemented as a single layer without
some degree of duplication. However, all of them can be implemented using
collectives that comprise multiple layers.

We now show how to represent this product line as an AHEAD model whose
elements are collectives. The resulting model contains one constant, the most-
basic assembly core〈rmi〉, and one collective for each reliability strategy. As we
describe our model and how it is used, we also focus on how we use our AHEAD
model to group the structural changes affected by refinements such that they
correspond to reliability connector wrappers. As we will see, a base middleware,
such as core〈rmi〉, corresponds to a middleware connector specification and col-
lectives that implement a reliability strategy correspond to reliability connector
wrappers. As we describe our model, we will make these correlations explicit.

4.1 A Reliable Middleware Model

Our model THESEUS, is

THESEUS = {BM, RS0, RS1, . . . ,RSn} (6)

where BM is a collective that represents the base middleware and each RSi

(0 ≤ i ≤ n) is a collective that represents some reliability strategy. Our base mid-
dleware (BM) is {coreao ◦ rmims}, which is equivalent to {coreao, rmims}8 where

8 Recall uses relationship described in Section 2.3; coreao uses rmims, as illustrated in
Figure 7.
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the subscripts ao and ms indicate layers in the active object and message ser-
vice realms, respectively. Similarly, each strategy RSi is a collective of the form
{refinement iao, refinement ims}, where refinement iao applies to (refines) an active-
object layer and refinement ims applies to a messages-service layer.

Elements of this product line are synthesized by choosing a set of reliability
strategies and then applying these in sequence to the base-middleware assembly.
An example application of the first two strategies, RS0 and RS1, is

rm = RS1 ◦ RS0 ◦ BM (7)
= {ref 1ao, ref 1ms}◦{ref 0ao, ref 0ms}◦{coreao, rmims} (8)
= {ref 1ao, ref 1ms}◦{ref 0ao ◦ coreao, ref 0ms ◦ rmims} (9)
= {ref 1ao ◦ ref 0ao ◦ coreao, ref 1ms ◦ ref 0ms ◦ rmims} (10)

There are three important properties of this composition. First, refinements nat-
urally apply to layers in the realm that they refine. In Equation 9, the active-
object refinement ref 0ao composes with coreao, and the message-service refine-
ment ref 0ms composes with rmims. Second, the order of refinement is preserved.
Namely, Equation 7 indicates the refinements should be applied right to left: RS0,
then RS1. In Equation 10 this ordering has been preserved in the refinement of
both the active-object and message-service layers.

The third property is this structural representation’s high-level mapping to
connectors and connector wrappers. Here, BM implements the base middleware
and corresponds to a connector that specifies the behavior of communication
among components that use this base middleware. The collectives RS0 and
RS1 correspond to reliability connector wrappers that augment BM. The col-
lectives that implement reliability strategies decompose further into reusable re-
finements, much like Spitznagel’s connector wrappers decompose into connector
transforms, but do not exhibit a strict one-to-one correspondence.

4.2 Reliable Middleware Examples

We now illustrate three applications of synthesis using the THESEUS model.

Bounded Retry As noted earlier, our bounded retry strategy is implemented by
the bounded retry (bndRetryms) refinement of the message-service realm and the
exposed exception handler (eehao) refinement of active-object realm. Under our
model, this strategy is implemented as the collective

BR = {eehao, bndRetryms} (11)

A model of a bounded retry augmented middleware bri is thus

bri = BR ◦ BM (12)
= {eehao, bndRetryms}◦{coreao, rmims} (13)
= {eehao ◦ coreao,bndRetryms ◦ rmims} (14)
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The visual stratification of the layers, as specified by Equations 12 and 13 is
shown in Figure 9. In this figure, the bottom two layers implement the middle-
ware and the top two are the refinements that implement the bounded retry
strategy. This visual stratification is expressed by Equation 14, whose layers are
the same as in Figure 8. Because each refinement in this model is local to a
specific realm (either message service or active object) the refinements may be
applied in arbitrary order; however refinements are not, in general, commutative.

Figures 8 and 9 visually depict the tighter binding of AHEAD refinements
that is shown equationally in Equations 12-14. Figure 9, and the corresponding
Equation 12, appear much as we would expect under connector wrapper compo-
sition, applying BR, which implements the bounded retry reliability connector
wrapper, to BM, which implements an existing connector.

Idempotent Failover. The idempotent failover policy specifies that, in the event
of a communication failure, the client should connect to a known backup. In the
simple version of failover, operations are assumed to be idempotent and there-
fore the original (primary) server and backup need not be synchronized with
one another. Upon failure of the primary, a failover refinement will suppress
the exception and silently switch over to the backup. Further, this policy as-
sumes a perfect backup that never fails; thus, once failover occurs, no additional
communication exceptions will arise.

Our implementation of this strategy is very similar to that of the bounded
retry refinement of the message service. In this case, instead of initiating a retry
loop on a communication exception, the class refinement simply resets the URI
of the peer messenger (via setURI, Figure 3) to that of the backup, connects
(via connect, Figure 3) to the corresponding inbox, and proceeds as normal.
Under our model, the strategy is

FO = {idemFailms} (15)

and an application is

foi = FO ◦ BM (16)
= {idemFailms}◦{coreao, rmims} (17)
= {coreao, idemFailms ◦ rmims} (18)
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In this example, FO comprises only a refinement of the message service. Because
failover is “perfect”, no exceptions propagate up to the client. As such, there is
no need to refine the active object with exception transformation logic such as
exposed exception handler.

Bounded Retry and Idempotent Failover. As a final illustration of the model,
consider the application of both the bounded retry and idempotent failover
strategies. The idea behind this composite reliability strategy is to retry the
primary some finite number of times before failing over to the backup. As such,
we apply bounded retry first, then failover; the application of this composite
strategy is

fobri = FO ◦ BR ◦ BM (19)
= {idemFailms}◦{eehao, bndRetryms}◦{coreao, rmims} (20)
= {idemFailms}◦{eehao ◦ coreao,bndRetryms ◦ rmims} (21)
= {eehao ◦ coreao,idemFailms ◦ bndRetryms ◦ rmims} (22)

Attending to the refinements of the message service, bounded retry is applied
first, then failover, as intended. Under these refinements,

1. A communication exception thrown by rmims will be suppressed by bndRetryms,
which will attempt to reconnect and resend the marshaled request some
bounded number of times.

2. If the bndRetry does not successfully reconnect, it will throw the communi-
cation exception.

3. idemFail will suppress this exception, connect to the backup, and resend the
marshaled request.

In Spitznagel’s connector-wrapper specification of each strategy, exceptions are
modeled by the action error [1]. In these specifications, the error action is inter-
cepted and triggers recovery; in this case, first a bounded retry, then failover.
Here, we see AHEAD collectives also compose, both structurally and behav-
iorally, in the same manner as connector wrappers.

Now consider if the order were changed to

fobri = BR ◦ FO ◦ BM (23)

idemFail would immediately switch over to the backup on failure, occluding any
communication exception from reaching bndRetry and would be functionally
equivalent to Equation 16. This is also the case in the corresponding connec-
tor specification; the juxtaposition finds the error action immediately triggering
failover behavior, just as the exception does in our implementation.

This also illustrates how a semantic conflict, namely the overlapping of the
recovery strategies used, may cause one refinement to occlude another. Because
a failover augmented middleware will never throw a communication exception,
the eehao is not needed and adds unnecessary processing. Under AHEAD, this
is a problem of composition optimization. While it is possible to inspect such
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an equation and remove exposed exception handler, this optimization is not
“automatic” and requires some form of higher reasoning about the semantics of
composite refinements.

5 Contrasting Implementation Strategies

We believe that our AHEAD-style implementation of reliability strategies offers
a useful alternative to wrappers without sacrificing the flexibility of composition
and reasoning provided by the connector-wrapper formalism. In previous sec-
tions we briefly illustrated a simple efficiency improvement in a message service
implementation of bounded retry (Section 3.4). We now describe the implemen-
tation of a more complex reliability policy, warm failover, and identify where
our approach eliminates both redundancy and the need for additional logic for
suppressing behavior.

5.1 Warm Failover

Warm failover is a reliability policy that uses a backup server providing reliability
via redundancy in a client-server architecture. This policy is a variation of process
pairs and takeover in transaction systems[23]. The original server is referred to
as the primary. The backup is “warm” in the sense that it is kept in sync with
the primary via some strategy dependent mechanism. Under this policy, if the
primary fails, the client uses the backup to recover lost responses. The client then
promotes the backup to the role of primary, which means the client sends requests
to and expects responses from the backup and the backup, correspondingly,
accepts requests from and sends responses to the client. This policy assumes a
“perfect” backup that will not fail, and, as such, does not account for the failure
of the backup.

The strategy we employ to implement warm failover is referred to as silent
backup. Under this strategy, the client sends each request to both the primary
and the backup. The primary processes these requests and sends the responses
to the client. The backup also processes requests (and is thus in sync with the
primary) but, rather than send the responses to the client, the backup caches
these in an outstanding response cache, which is keyed on the response’s unique
id (an asynchronous completion token). This cache is intended to store only the
responses that the client has yet to receive from the primary. To maintain the
cache as such, the client is obligated to send acknowledgements (that comprise
a response id) to the backup when it receives a response from the primary,
indicating that response may be removed from the cache. Upon failure of the
primary, the client sends a control message to the backup indicating this failure
and promotes the backup to the role of primary. When the backup receives such
a message, it sends any outstanding responses to the client and, henceforth, upon
processing a request, sends the response to the client rather than caching it.

5.2 Theseus Refinements

To implement silent backup, we must augment the client and create a backup
that fulfills the responsibilities outlined above. The primary remains unchanged.
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Client Refinements. To implement the client’s responsibilities, we send each
request to both the primary and the backup, activate the backup in case the
primary fails, and send acknowledgements to the backup as the primary’s re-
sponses arrive such that the backup may purge these from the response cache.
The following describes the refinements that fulfill these responsibilities.

Duplicate Request (dupReq) refines PeerMessenger to connect to and send re-
quests to both the primary and the backup. In the event that the primary fails,
the peer messenger sends a special activate message to the backup, which in-
dicates the backup should assume the role of the primary. Once the activate
message has been sent, the peer messenger sends requests only to the backup.

Acknowledge Response (ackResp) refines the active object layer to send acknowl-
edgements indicating a response has been received. In Theseus, a variant of the
dispatcher (DynamicDispatcher) is used to dispatch responses to threads ded-
icated to processing responses and making them available to the client. Here,
this type of dispatcher is refined to send acknowledgements to the backup as it
dispatches these responses.

The client side of silent backup is implemented by the collective SBC.

SBC = {ackRespao, dupReqms} (24)

The warm failover client wfc is instantiated by

wfc = SBC ◦ BM (25)
= {ackRespao, dupReqms} ◦ {coreao, rmims} (26)
= {ackRespao ◦ coreao,dupReqms ◦ rmims} (27)

(28)

The visual depiction of these layers is shown in Figure 10.

Backup Server Refinements. The backup server should have all the func-
tionality of the original server, modulo features for handling control messages,
caching responses, and switching from the role of silent backup to that of primary.
To this end, we refine our minimal middleware (core〈rmi〉) with the following re-
finements:
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Control Message Router (cmrms) is a refinement of the message service that ac-
commodates specially formed control messages (acknowledgement and activate
messages) that have the same expedited properties as TCP’s out-of
-band data [24] using existing operations of the PeerMessengerIface and
MessageInboxIface. Control messages are serializable objects that implement
ControlMessageIface, which provides getters for retrieving both the command
type (such as “ACK” and “ACTIVATE”) and the data payload of the message
(such as the id of the response being acknowledged). When such an object is
passed to PeerMessenger’s sendMessage operation, it delivers that object to
the corresponding inbox as normal. The control message router layer refines the
inbox to filter control messages so they are handled immediately (expedited)
and not mistakenly passed along as service requests. On the inbox side of com-
munication, listeners implement a ControlMessageListenerIface and register
themselves as listeners, indicating which command type they are interested in
being notified of. When a command of that type arrives, the inbox invokes the
postControlMessage operation of the interested listeners.

Response Cache (respCacheao) augments the active object layer to cache re-
sponses. In a Theseus skeleton, the stub logic that marshals requests (Sec-
tion 3.3) is used to marshal responses. We refine the invocation handler that
participates in marshaling responses to store these in the cache rather than
send them to the client. Further, the refined invocation handler implements
ControlMessageListenerIfaceand is registered with the control message router
to listen for both acknowledgement and activate messages. Upon acknowledge-
ment of a response, the invocation handler removes that response from the cache.
Upon activate, the backup starts delegating requests to a live invocation han-
dler (one that sends responses to the client rather than storing them), effectively
switching to a configuration that is equivalent to that of the primary.

Our implementation of the server half of the silent backup strategy, SBS, is

SBS = {respCacheao, cmrms} (29)

When instantiated, the corresponding configuration, sb, is

sb = SBS ◦ BM (30)
sb = {respCacheao, cmrms} ◦ {coreao, rmims} (31)
sb = {respCacheao ◦ coreao, cmrms, rmims} (32)

The visual depiction of these layers is shown in Figure 11.

5.3 Implementing Silent Failover with Middleware Wrappers

We now contrast our implementation of silent failover with a wrapper imple-
mentation constructed using Spitznagel’s wrapper transformations.
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Duplicating Requests. To duplicate requests sent by the client, the add observer
wrapper is applied. This wrapper creates a duplicate middleware stub for com-
municating with the backup server. Each time an operation is invoked, the cor-
responding request is sent to both the primary and the backup. As such, the
marshaling due to the second invocation is both functionally and structurally
equivalent to the first, introducing redundant processing in redundant compo-
nents. Because our approach refines the peer messenger to send the marshaled
request to both the primary and the backup in the message service, we avoid
the processing redundancy inherent in marshaling the same invocation twice.

Managing the Response Cache. Acknowledging responses and maintaining a re-
sponse cache requires the introduction of unique identifiers (asynchronous com-
pletion tokens) to both the request and the response and the introduction of
an out-of-band message service comparable to our control message service. The
easier of the two is the application of a data translation wrapper that introduces
unique identifiers such that they are available for use by middleware wrappers.
Upon client invocation, a data-translation wrapper cannot modify the marshaled
request, but it can add a unique identifier to the invocation parameters. On the
backup, a dual data translation wrapper wraps the servant and removes this
identifier. Also on the backup, this wrapper must apply the unique identifier
to the return data (the response) and store that response in a response cache.
While these wrappers work, the introduction of unique identifiers is redundant
with the corresponding middleware identifiers used to coordinate requests and
responses (such as CORBA’s object id[25] and RMI’s UID[26]). In Theseus, re-
finements such as ackResp and respCache have access to the existing identifier
marshaled into a request. As such, they non-destructively re-use these identifiers
to maintain the response cache.

An auxiliary concern that arises when treating the middleware as a black box
is how to “silence” the backup server. Silencing the backup requires somehow,
non-invasively orphaning the components that send responses. Under black box
wrapping, on the server side, wrappers are applied to the servant that is reg-
istered with the middleware. When a request is received by that middleware,
it invokes the corresponding invocation on the servant and expects that ser-
vant to return some data that is to be sent back to the client. As such, one
must affect suppression of the reply, caching it instead, when the servant re-



252 J.H. Sowell and R.E.K. Stirewalt

turns. In some middleware systems, interceptor techniques (such as CORBA’s
interceptors[12,13]) can be used to suppress replies by intercepting, caching, and
then discarding each without sending them. However, not all systems support
such facilities and would have to send some form of response to the client. As
such, the client must suppress this behavior by discarding responses sent by
the backup. In the latter case, the backup can not be made silent and will cre-
ate additional traffic that silent backup was intended to avoid. In contrast, we
silence the backup by applying a refinement (respCache) that replaces the invo-
cation wrapper that sends the responses with one that caches them, effectively
removing this component rather than orphaning it.

The more difficult part of managing the response cache is sending the ex-
pedited control messages needed to acknowledge responses and activate the
backup server. Because conventional middleware, by its nature, hides the un-
derlying communication primitives, expedited control messages and the corre-
sponding out-of-band data channel must be implemented completely indepen-
dently of the stub and skeleton infrastructure. To this end, client wrappers must
contain hooks for communication with objects that instantiate and maintain
an additional communication channel between the client and the backup for
such expedited messages. Correspondingly, the wrapper on the backup must
maintain similar hooks to objects that implement a server that listens for such
messages and handles the connections between itself and its clients. This solu-
tion introduces both complexity and a duplicate communication channel, fur-
ther increasing system resource usage. Using refinements, the developer of silent
backup may refine the existing message service to filter out control messages
and post them to their listeners immediately, preserving the expedited nature of
the out-of-band messages. Moreover, this refinement re-uses the existing chan-
nel and avoids the need for an auxiliary message service to manage out-of-band
channels.

Recovery from Failure. As per silent backup, in the event of an error, the client
activates the backup, the backup sends outstanding responses to the client, and
then the backup assumes the role of the primary. Implementing these with wrap-
pers requires adding fairly extensive recovery logic that uses the out-of-band data
channel to resend responses. This logic is added to both the client and backup
server. On the backup, when the activate message is received, the responses are
sent over the out-of-band data channel (because the middleware occludes ac-
cess to the underlying communication channel), to the client. After sending the
activate message, the client waits to receive these responses and delivers the cor-
responding results to the client via hooks into the stub wrappers. Depending on
the type of middleware being wrapped, the delivery mechanisms will differ. For
instance, if the wrapper augments a message-oriented middleware, the wrapper
simply needs to add the response to a queue and invoke a notification method
that indicates a new message has arrived. In the case of a synchronous middle-
ware stub, the client is blocked on a synchronous call to the stub wrapper and
is awaiting its return; delivery logic must use a setter method that allows it to
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set the return value of that wrapper and then notify it such that it will return
that value to the client.

In our refinement-based implementation, by virtue of our ability to re-use
existing abstractions, recovery is drastically simplified. Because the refined in-
vocation handler caches the responses as it receives them, the recovery initiated
by the activate message may simply iterate through these responses, replaying
them to a live invocation handler (one whose configuration is identical to that
of the primary’s invocation handler) that will send them to the client via a peer
messenger. From the perspective of the client, because these are sent by an invo-
cation handler identical (in configuration) to that of the primary, these responses
are sent directly to the client’s inbox, where they will be retrieved and delivered
exactly as if they had been sent by the primary.

Promoting the Backup to Primary. To complete the transition from backup to
primary requires transitioning the backup from silent to active. This returns us
to the concern of how to silence the backup. If this was possible via a mechanism
such as portable interceptors, the logic for processing activate message ought to
reverse this augmentation such that the backup sends responses to the client. If
the backup is already sending responses, the client’s promotion of the backup to
the primary should cause the client to begin accepting responses from the client
rather than discarding them as before.

Using refinements, the implementation of this transition is also drastically
simplified. Recall that the backup was made silent by replacing the live invo-
cation handler with one that caches responses. Reversing the process is just as
simple: the caching invocation handler is replaced with a live invocation handler,
cached responses are replayed, and subsequent responses are sent to the client
by the now live invocation handler.

5.4 Discussion

Both wrappers and AHEAD collectives an be used to augment middleware with
reliability. Wrappers are more reusable in that they do not require the underlying
middleware to have been designed according to an AHEAD model. Consequently,
legacy systems may benefit from wrapper based reliability, transparent to both
the original communication system and the applications that use these. How-
ever, with this reusability comes the potential for redundancy and inefficiency.
Moreover, additional complexity may be introduced if existing components must
be orphaned by an augmentation.

By contrast, we sacrifice reusability across multiple middleware implementa-
tions for a mechanism that accommodates fine-grain composition and refinement.
As such, we avoid the complexity of suppressing, bypassing, or accommodating
behaviors of a former middleware incarnation in favor of those behaviors ex-
pressed by newer strategies. Further, our type expressions make the structural
composition of these systems clear.

The skeptical reader may question the redundancy and efficiency gains af-
forded by the seemingly minor improvements, such as removing duplicate stubs.
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These “minor” inefficiencies may snowball in a system in which thousands, or
even millions, of stubs and skeletons are managing the sessions of an equal num-
ber of client-server interactions. At this scale, the cumulative gain is substantial.
These improvements are especially important in systems with tight resource con-
straints, such as small devices, real-time systems, and high-availability systems.
In such cases, computational and storage resources are at a premium.

6 Conclusions and Future Work

In her work implementing connector wrappers, Spitznagel identified a covering
set of transforms that can be used to implement a variety of reliability strategies
and may be applied to many different middleware implementations. Because
these wrappers treat middleware as a black box, this portability comes at the
cost of redundancy and increased resource consumption, neither of which are
acceptable for small, mobile devices that are most in want of reliability.

This paper descibes an alternative implementation that capitalizes on the
compositional properties of systems built under the AHEAD-model. Under this
model, a system is enhanced by augmenting the base middleware with refine-
ments that are relevant to the reliability policy at hand and recomposing the
system. These refinements may then reuse resources that implement common
middleware abstractions, allowing the refinement itself to implement only the
essence of the policy at hand.

To validate our alternative, we illustrate how a minimal middleware may be
augmented by refinements to implement various reliability policies. Moreover,
we provide a model that groups the refinements that collaborate to implement
reliability strategies into collectives that may be applied as a single, composite
refinement, analogous to how connector wrappers are applied to connectors.
Finally, our evaluation of silent backup illustrates that our refinements do indeed
avoid redundancy when compared with a wrapper-based approach.

Our future work intends to extend Theseus with the ability to incorporate
reliability enhancements at run-time, using dynamic-reconfiguration techniques,
such as [27,28]. We expect this work to leverage dynamic recomposition repre-
sentations, such as Dynamic WRIGHT[29], to support a design tool that allows
developers to design multiple configurations and then evaluate the possible tran-
sitions between them.
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Abstract. One of the main objectives of developing component-based software 
systems is to enable efficient building of systems through the integration of 
components. All component models define some form of component interface 
standard that facilitates the programmatic integration of components, but they 
do not facilitate or provide theories for the prediction of the quality attributes of 
the component compositions. This decreases significantly the value of the com-
ponent-based approach to building dependable systems. If it is not possible to 
predict the value of a particular attribute of a system prior to integration and de-
ployment to the target environment the system must be subjected to other pro-
cedures, often costly, to determine this value empirically. For this reason one of 
the challenges of the component-based approach is to obtain means for the 
“composition” of quality attributes. This challenge poses a very difficult task 
because the diverse types of quality attributes do not have the same underlying 
conceptual characteristics, since many factors, in addition to component proper-
ties, influence the system properties. This paper analyses the relation between 
the quality attributes of components and those of their compositions. The types 
of relations are classified according to the possibility of predicting properties of 
compositions from the properties of the components and according to the influ-
ences of other factors such as software architecture or system environment. The 
classification is exemplified with particular cases of compositions of quality at-
tributes, and its relation to dependability is discussed. Such a classification can 
indicate the efforts that would be required to predict the system attributes which 
are essential for system dependability and in this way, the feasibility of the 
component-based approach in developing dependable systems. 

1   Introduction 

Component-based development (CBD) is of great interest to the software engineering 
community and has achieved considerable success in many engineering domains. 
CBD has been extensively used for several years in desktop environments, office 
applications, e-business and in general in Internet- and Web-based distributed applica-
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tions. The component technologies (for example COM/DCOM, CORBA, EJB and 
.NET) used in these domains originate from object-oriented (OO) technologies. The 
basic principles of the OO approach, such as encapsulation and class specification 
have been further extended. The importance of component interfaces has increased; a 
component interface is treated as a component specification and the component im-
plementation is treated as a black box [26]. A component interface is also the pro-
grammatic means of integrating the component in an assembly. Component technolo-
gies include the support of component deployment into a system through the compo-
nent interface. On the other hand, the management of the component quality attributes 
has not been supported by these technologies. This topic has instead been treated 
separately from the applied component-based technologies.  

In many other domains, for example dependable systems, CBD is utilized to a 
lesser degree for a number of different reasons [3]. One is the difficulty of implement-
ing the same component technologies because of various system constraints such as 
limited resources which is one typical characteristic of small embedded systems. 
Another reason is the unclear distinction between system components which include 
both hardware and software parts and software components which may be encapsu-
lated in system components or distributed through several system components. In this 
article, whenever we use the term “components” we assume “software components”. 
Finally an important reason is the inability of component-based technologies to deal 
with quality attributes as required in these domains. For dependable systems, a num-
ber of quality attributes are as important as the functions these systems provide, and 
the development effort related to realizing quality attribute requirements is most often 
greater than the effort related to the implementation of particular functions. In gen-
eral, the problem of CBD for dependable systems is that, if components are consid-
ered black boxes, it is difficult to obtain evidence that they behave according to their 
specifications. Moreover, depending on the deployment and usage context a compo-
nent’s behavior might change. Dependability arguments can be obtained only if the 
complete behavioral specification of a component is known beforehand. If the advan-
tages of component-based technologies are limited to the functional domain only and 
cannot be utilized in the domain of quality attributes, or, even worse, introduce diffi-
culties in the management of quality attributes, these technologies cannot be fully 
utilized.  

The component-based approach is closely related to software architecture. The use 
of a component-based technology decreases chances to get an architectural mismatch 
by standardizing certain architectural decisions. A software component model speci-
fies rules for component composition and interoperation and in this way simplifies the 
development process and similar to software architecture makes it possible to reason 
about quality properties largely independent of a particular application. The main 
difference between a software component-based approach and the software architec-
ture-oriented approach is that the former focuses on reusability of already existing 
components, whereas the latter focuses on a conceptual approach in identifying com-
ponents, their interconnections and evaluation of overall configuration.  

Some of the main advantages of CBD are reusability, higher abstraction level and 
separation of the system development process from the component development 
process [3,4]. These advantages have however implications on other aspects of soft-
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ware and system development. The final success of the utilization of CBD depends 
not only on its advantages but also on these implications – the degree to which they 
are positive and negative. Since for dependable systems, particular quality attributes 
are of the greatest importance, a question which arises is to what extent does CBD 
influence the achievement of these properties: CBD can introduce new difficulties, it 
can be irrelevant for those properties, or can have a positive effect. For this reason it 
is of interest to analyze the ability of CBD to cope with requirements related to qual-
ity attributes.  

Component-based software engineering (CBSE) faces two types of problems in 
dealing with quality attributes. The first, common to all software development, is the 
fact that the quality attributes are often imprecisely defined or difficult to estimate and 
measure. Further, values of certain properties may be different in different contexts. 
The second, specific to component-based systems, is the difficulty of relating system 
properties to component properties. In CBD one desired feature is that components 
can be selected and integrated in an automatic and efficient way. This goal is achieved 
for the functional part; components are selected and integrated through their inter-
faces. It is questionable if a similar approach can be applied to quality attributes.  

For component-based systems crucial questions in relation to quality attributes are 
the following: 

− Given the system quality attributes required, which attributes are required of 
the components concerned and which attributes are required from the compo-
nent design- and runtime infrastructure? 

− Given a set of component attributes, which system attributes are determined? 
− How can the quality attributes of a system be accurately predicted, from the 

quality attributes of components which are determined with a certain accuracy.   
− To which extent, and under which constraints are the emerging system attrib-

utes determined by the component attributes? 

These and similar questions have been addressed at a series of CBSE symposia [4], 
and particular models of certain properties have been analyzed [14], but so far very 
little work has been done in the systematization and classification of quality attributes 
in accordance with the questions above. Although there are other classifications of 
quality attributes such as [6,7,17,23], these have not considered the predictability  and 
composability aspects of the quality attributes.  

Some system quality attributes can be derived directly from the component attrib-
utes; others might require a complex calculation model, related to the component 
model and the system architecture. Some system attributes, such as safety, do not 
exist on the component level and are the result of a complex combination of the sys-
tem interaction with its environment, system architecture and different attributes of 
components involved.  

In this paper, our intention is to demonstrate the diversity of quality attributes and 
the different methods which can be used for predicting system properties from the 
properties of the components involved. The quality attributes can be classified accord-
ing to our ability to accurately calculate their compositions, i.e. the ability to predict 
the properties of component compositions. Such a classification indicates the feasibil-
ity of the component-based approach for building dependable systems. 
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 The paper is organized as follows: Section 2 provides basic definitions needed for 
a classification and a classification framework which is used in our CBD-specific 
classification. Section 3 identifies the types of properties according to the principles 
for predicting the properties of component assemblies. Section 4 discusses the pro-
posed classification with respect to a possibility of combining the types identified in 
the previous section, and with respect to recursive composition. Section 5 analyzes 
composability of properties of dependable systems and discusses possible benefits for 
dependable models of utilizing CBD and Section 6 concludes the paper.  

2   Composability of Quality Attributes 

In this section we will take a more fundamental look at what quality attributes or 
properties are and what they are good for. We then investigate the various notions of 
property decompositions, so that we can properly position our empirical and composi-
tion-oriented classification of properties. 

2.1   What Are Properties? 

The discussion in this paper is not primarily concerned with the theories behind indi-
vidual types of properties (such as what is green, or what is having a latency of, or 
what is security). It is rather concerned with how we can generalize our understanding 
of the notion of property or its synonyms to a level where we can suggest a principled 
manner to conceptualize them in the context of software systems and software com-
ponents where we can suggest a principled manner to reason about them in a decom-
positional way.  

2.2   The Philosophical View on Properties – What Are Properties Good for? 

Coming to grips with properties is pervasive in philosophy. Plato’s theory of Forms 
([19], p. 93) (where Form is said to be Plato’s term for property,) seems to be one of 
the earliest accounts on what is today called properties. The term property includes 
attributes, qualities, features, or characteristics of things. It even encompasses rela-
tions such as being faster than.  

The need for properties is motivated by their explanatory roles they have to fill. 
They came into being to describe phenomena of interest (like when we say: the sys-
tem response is very fast). Because a stakeholder is a role that represents groups of 
people who have similar interests in the same phenomenon, the choice of properties 
and their importance is clearly related to certain stakeholders or stakeholder classes.  

From an ontological viewpoint, the existence of properties is determined empiri-
cally. As a first important rule this means that properties and their definitions are 
conceived by humans and there is no a priori, logical or conceptual method to deter-
mine which properties exist [24]! This also means that the notion of a property and 
every type of property is an abstract concept only. As with any concept, humans de-
fine its name as well as its definition and its related theories. We therefore do not have 
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to argue about the universal truth behind or correctness of a property as long as its 
definition and purposeful theory fulfills our goals. 

From a natural language viewpoint, there is no single idiom to talk about and use 
properties. In other words, properties are distinct from their representations and the 
same property may have different representations. In the English language for exam-
ple, properties can appear as single terms with any of the many suffixes such as ‘-ity‘, 
‘-ness’, ‘-hood’, ‘-kind’, ‘-ship’, etc. (e.g. as in ‘safety’), or as predicative expressions 
in multiple ways (e.g., ‘executes safely’, ‘is safe’). Hence, since properties are con-
ceived by humans, not only their meaning need to be defined but also their possibly 
numerous, not only natural language-based, representations.  

As with any concept (i.e. purely knowledge-related construct), humans tend to 
categorize also properties, i.e. we describe properties by means of inherent character-
istics of certain categories. Two such inherent characteristics that are very important 
in the discourse of “quality attribute compositions”: complexity, and specificity. 

Complexity refers to the fact that properties can be simple or compound/complex. 
A complex property is some form of a logical structure or combination of properties. 
This combination must of course be defined to understand a complex property. As an 
example for a complex property consider ‘being my grandfather’. It implies that the 
person this property is ascribed to is ‘male and older than I am’. Or ‘being CMM 
Level 3 certified’ implies that the software development unit this property is ascribed 
to ‘has a software process that is documented and standardized, and that all software 
projects use an approved, tailored version of this standard software process for devel-
oping and maintaining software’[22]. 

Specificity refers to the fact that a property can be a determinable or a determinate. 
The distinction, however, is relative in that a determinate property is a more specific 
version of a determinable. For example, “up-time” is a determinate property (i.e. a 
more specific one) of the determinable “availability”. The measure “time passed be-
tween failures” is in turn one possible determinate of “up-time”. The hierarchy of 
determinables and determinates is generally expected to bottom out in completely 
specific, absolute determinates. In software engineering, such leave determinates 
would be called quality-carrying properties, or direct properties, or tangi-
ble/measurable properties, to name a few. 

In software engineering, hierarchies or taxonomies of properties, which are funda-
mentally based on the notions of complexity and specificity, are at the heart of the 
decompositional approaches of quality models (e.g. [8] and its predecessors).  

2.3  Realization-Oriented Decomposition Versus Other Forms of Property 
Decompositions 

Before we proceed to the patterns of realization-oriented decomposition/traceability in 
the next main chapter, we want to clarify by means of Fig 1 how two other types of 
property decompositions are related to the realization-oriented decomposition: (1) 
classification oriented quality attribute decompositions, and (2) the analysis-oriented 
decomposition for non-functional requirements. 
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Fig 1. Different Types of Property Decompositions 

Fig 1 shows a System and its ascribed properties P1…Pn. The System is composed of 
two components (Component 1 and Component 2) that engage in a Collaboration. In 
this simple example, every component has just one property P1. If we envision a 
designer who needs to design a System with the required properties P1…Pn, the con-
stituents of the System would be called the realization elements. 

In a realization-oriented decomposition we want to relate a system-level property 
to the elements that realize the system and that cause the property to manifest in the 
requested way. Fig 1 illustrates a simple case in which the Component 1 and 2 and 
their respective property P1 realize the system-level property P2. Let us take the sim-
ple case where P2 of the System expresses its power consumption in Watts. P1 of 
Component 1 and 2 would simply be the respective consumption per component. 
Hence, P2 of the System is no more than the sum of the two properties P1 of the two 
components. This is of course the simplest case and it is, in fact, the subject of the rest 
of this paper to elaborate on other types of realization-oriented decompositions. 

A classification-oriented decomposition on the contrary refers to a hierarchy rep-
resented as a tree of determinables and determinates, where the leaf determinates 
could be selected as the relevant, required properties of a system. Hence, it is a classi-
fication that serves the purpose of knowledge structuring. It represents a decomposi-
tion of high-level properties into more tangible ones so as to end with a set of quanti-
fiable properties on some scale. The ISO/IEC 9126-1 [8] is a representative for such a 
classification because it defines a set of characteristics, which are decomposed into 
subcharacteristics, which in turn shall be decomposed into potentially measurable 
properties. Such a classification can therefore serve as starting point for defining the 
system-level properties to be realized. In Fig 1, such a classification is used to derive 
the required properties P1 and P2 of the System. For instance, P1 could be the re-
quired physical property power consumption, whose value must be below a certain 

.
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threshold. P1 could have resulted from the ISO/IEC 9126-1 derived classification 
Efficiency (C1) -> Resource Utilization (C11) -> Power Consumption (C111). 

The third kind of decomposition - analysis-oriented decomposition – is shown in 
the figure for completeness reasons only. It relates to the decomposition of require-
ments. For more details of this category and in general on these classes of decomposi-
tion refer to [18]. 

2.4   Definitions of Certain Terms 

We feel that terms such as non-functional property, extra-functional property, quality 
attribute, etc. are very often not used carefully enough. Based on our research, we 
would suggest the following distinction which we used in this paper.  

− Attribute/property are treated as synonymous and are used in the most general 
sense as defined by standard dictionaries, e.g.: “a construct whereby objects 
and individuals can be distinguished” [15] “a quality or trait belonging and es-
pecially peculiar to an individual or thing” or “an effect that an object has on 
another object or on the senses” [16]  

− A required attribute/property is expressed as a need or desire on an entity by 
some stakeholder. We may call such a property a requirement.  

− An exhibited attribute/property is an attribute/property ascribed to an entity as 
a result of evaluating the entity. The evaluation may be direct, in the sense that 
one does some measurement with the entity in question, or it may be indirect. 
The latter may be the case when we ascribe a property to an entity because we 
evaluate related artifacts or because someone made us believe that the entity 
has this (typically conceptual) property, although we can hardly measure it on 
the entity itself.  

− Quality: The totality of exhibited attributes/properties of an entity that bear on 
its ability to satisfy stated or implied needs, i.e. to satisfy its requirements. 
Quality thus represents the set of all exhibited attributes/properties that have a 
relationship to required properties. 

− Quality attribute/property: Refers to an exhibited attribute/property that is part 
of the Quality of an entity. 

Having discussed the basic classes of property decompositions that are being used 
today, we can now focus on the conceptualization of the realization-oriented decom-
positions that go along with building software-intensive systems based on software 
components. 

3   Classification of Properties 

A great number of quality attributes are encountered in software engineering. They 
are classified in many different ways, frequently in a non-orthogonal manner. One 
example of classification is related to the system lifecycle: run-time properties (visible 
and measurable during the program execution) and lifecycle properties (those that 
characterize different phases in a development and maintenance process). Another 
example is the quality model defined in ISO/EIC 9126-1 “Software engineering - 
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product quality” standard [8], which classifies quality attributes as external and inter-
nal. Quality attributes are the measurable, quantifiable properties of a software prod-
uct. The latter also includes all its intermediate development artifacts. Quality attrib-
utes that refer to the internal quality – internal quality attributes - are typically applied 
to intermediate deliverables at certain development stages (e.g. attributes of a design 
specification, source code, etc.). Internal therefore has the connotation of “develop-
ment internal view”. The relation between internal and external quality attributes is 
not unambiguous though; an internal quality attribute may have impact on different 
external quality attributes and of course an external quality attribute is a result of 
combination of internal attributes.  

The classification we consider here is related to composability. We classify proper-
ties according to the principles applied in deriving the system properties from the 
properties of the components involved. Instead of the term “system”, we shall use a 
generic term Assembly (A) which simply denotes a set of interacting components. 
Such an assembly can be a part of a software system (for example a functional unit, or 
a subsystem), or the entire system. The only characteristic we want to relate to an 
assembly is a set of integrated components – an assembly can be assumed as a com-
ponent (however composed of other components). Some properties, however, cannot 
be related only to an assembly, but are explicitly related to the entire system and its 
interaction with the environment. In such cases we refer to a System (S).  

We distinguish the following types of properties: 

a. Directly composable properties. A property of an assembly which is a function 
of, and only of, the same type of property of the components involved. 

b. Architecture-related properties. A property of an assembly which is a function of 
the same type of property of the components and of the software architecture. 

c. Derived properties. A property of an assembly which depends on several differ-
ent properties of the components.  

d. Usage-depended properties. A property of an assembly which is determined by 
its usage profile.  

e. System environment context properties. A property which is determined by other 
properties and by the state of the system environment. 

Let us discuss these cases and give examples in the following subsections. 

3.1   Directly Composable Properties 

Definition: A directly composable property of an assembly is a function of, and only 
of the same property of the components. 
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Note that the property of the assembly is the same as the component property. Fur-
ther, the component technology is not explicitly specified in the relation (1). However 
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it is obvious that the function f itself is dependent on the technology since the mecha-
nisms to assemble components is provided by the component technology.  

An example of a property of this type is the static memory size of a component 
or an assembly, this is also known as the memory footprint. The simplest composi-
tion model is the calculation of the static memory of an assembly as the sum of the 
memories used by each component: 
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The function M(ci) is different for different technologies. For example in the 
case of the separation of composition time from run-time which is usually used in 
embedded systems, M(ci) will be a constant, possibly parameterized by configura-
tion factors. In such cases the static memory size of an assembly will be a constant. 
A more complicated model can be found in the Koala component model [25], in 
which additional parameters, such as size of glue code, interface parameterization 
and diversity are taken into account (i.e. the parameters determined by the compo-
nent technology used).  

The equation (2) is also valid for a dynamic memory, with the difference that 
M(ci) is not a constant, but a function which may depend on the usage profile. 
When using a particular technology, design patterns or parameterized resources  
this function may be limited  on a particular value or budgeted. In such a case the 
total amount of memory can be calculated. 
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The properties of this type can be calculated directly from the component properties 
if the components comply with particular restrictions for memory allocation. These 
restrictions can be built in component technologies. 

For this type of composition there are no other assumptions and therefore these 
properties are the easiest to specify and predict. This does not mean that the compo-
sition functions are easy or even possible to express formally. However the fact that 
the property is visible on component and assembly level, and that the assembly 
property is dependent only on the component properties simplifies the  
prediction procedure and makes the prediction valid in any application using these 
components.  

3.2   Architecture-Related Properties 

Definition: An architecture-related property of an assembly is a function of the same 
property of the components and of the software architecture. 
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In this case the assembly properties depend not only on the component properties but 
on the architectural structure. The software architecture is often used as a means for 
improving particular properties without changing the component properties. These 
types of properties can be tuned by different architectural solutions or variations. An 
example of such a property is a performance predictability model for J2EE (Java 2 
Platform, Enterprise Edition) application presented in [9,29]. A typical application 
implemented in this technology would be a distributed web-based application in 
which the variability in scalability is achieved by it being possible to add new clients 
and new computational (business) components to the server as illustrated in Fig 2. To 
achieve concurrency the components are executed in different threads. A possible 
extension variation of this architecture is the possibility to include several nodes with 
web servers and business applications. 

Client tier Web server tier Business logic tier Data tier

Web server

Business
components

Data access
components Data

Variability
points

Client tier Web server tier Business logic tier Data tier

Web server

Business
components

Data access
components Data

Variability
points  

Fig. 2. A typical multi-tier architecture with client and servers variability points affecting the 
performance quality property 

The performance of the system shown in the Fig 2 is related to the number of cli-
ents and the number of server components. A typical requirement for such applica-
tions is the performance and scalability, i.e. the dependencies between the perform-
ance and number of clients and active business components.  

According to [9,29] the time per transaction T/N expressed in equation (5) depends 
on several factors related to the system architecture: The first factor comes from the 
concurrent requests that compete for service from the server component. This in-
cludes the network bandwidth and underlying transport mechanisms. The second 
factor describes a case in which accepted requests compete for a thread to execute the 
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business components. The third factor results from concurrent access to the database 
by the concurrent server threads.  

The first factor is proportional to the number of clients, the second to the number 
of clients and inversely proportional to the number of threads (i.e. number of compo-
nents on the server) and the third factor is proportional to the number of threads.  
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The form of the equation shows that it is possible to calculate the optimal number of 
threads in relation to the number of clients to achieve a minimum respond  time per 
transaction. 

3.3   Derived Properties 

Definition: A derived property of an assembly is a property that depends on several 
different properties of the components.  
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In the same way that a function of an assembly is more than the sum of the compo-
nent functions, there are properties that are the result of the composition of different 
component properties.  

An example of such a property in a real-time system is the end-to-end deadline (a 
maximal response time) that is a function of different component properties, such as 
worst case execution time (WCET) and execution period as shown in the following 
example. Let us consider real-time port-based component models with provided and 
required interfaces and interfaces to an underlying operating system or I/O devices, as 
discussed in [5,10,28]. In these models, components are implemented as tasks, parts 
of a task or a set of tasks. An assembly consisting of two components, where every 
component is realized as a task is shown on Fig 3. Each basic component includes 
properties such as WCET and execution period. A composition of this simple model 
is achieved by connecting ports and identifying provided and required interfaces. 

The question is whether we can calculate WCET for an assembly of components 
executing with different periods. In a case in which the execution periods are the 
same, this would be possible. In a case in which these periods are different, we cannot 
specify WCET of the assembly, but we can specify end-to-end deadline and a period. 
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An end-to-end deadline is the maximum time interval between the start of the first 
component in an assembly and the finish of the last component in the assembly. The 
assembly period will be a number to which the components periods are divisors. 
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Fig. 3. Composition of port-based components 

In a similar way we can calculate latency, or response time, from the real-time 
properties of components if particular assumptions about real-time system characteris-
tics, such as scheduling policy, and mapping between component and real-time enti-
ties are taken. In a case in which components are mapped to tasks and the fixed prior-
ity scheduling is used, a worst case latency of component ci, L(ci), can be calculated 
as [11]: 
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B is the blocking time, hp(ci), is the set of components having tasks with higher prior-
ity than component i, cj.T is the period and cj.wcet is the worst-case execution time of 
component ci. 

Emerging properties, i.e. properties that are pertinent on a system (or an assembly) 
level but are not visible on the component level are of special interest in this category. 
For such properties the major challenge is to identify the properties of the components 
that have impact on them. 

3.4   Usage-Dependent Properties 

Definition: A Usage-dependent property of an assembly is a property which is deter-
mined by its usage profile.  
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The behavior of an assembly and consequently of a system depends not only on the 
internal properties of the components and their composition but also on the particular 
use of the system. A usage profile Uk which determines a particular attribute Pk must 
be transformed to the usage profile U´i,k to determine the properties of the compo-
nents.  

Properties of this type introduce particular problems as they depend on the use of 
the system. This means that the component developers must predict as far as possi-
ble the use of the component in different systems – which may not yet exist. A 
second problem is the transfer of the usage profile from the assembly (or from the 
system) to the component. Even if the usage profile on the assembly level (Uk) is 
specified, the usage profile for the components (U´i,k) is not easily determined espe-
cially when the assembly (and the system) configuration is not known.  

A particular problem with this type of property is the limited possibility of reus-
ing measured and derived properties. If the usage profile is changed, the properties 
must be re-calculated or re-measured. An example of such property is reliability 
which in software is calculated or measured for particular usage profiles. The ques-
tion arising here is the possibility of reusing previous specifications of the property 
[5]. The first thought would be that this is possible if the domain of the new usage 
profile is a sub-domain of an old usage profile. In this case the value of a property 
will be within the range of possible values of the property for the old usage profile; 
the local maximum and minimum value being in the range of values for the old 
usage profile (see Fig 4).  
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Fig. 4. Property for different usage profiles 

If the new requirements of a property in a new usage profile are equal of or less 
stringent than the old requirements, we can use the property value from the old 
usage profile. This means, for example, that we do not need to measure the compo-
nent properties.  

),(),(),( maxmin kkllkkkl UAPUAPUAPUU −− ≤≤⊆  (9) 
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In a case in which a property is expressed as a statistical value (such as a mean value), 
the property value in an interval can be changed in an unwanted direction; Fig 4 illus-
trates such example in which the mean value of the property P(U) in the interval [Ul-

min, Ul-max]  is lower than in the entire interval [Uk-min, Uk-max], although the minimum  
and maximum values are higher. For certain properties (such as availability, or differ-
ent quality of services) in certain domains (for example multimedia) the average plays 
a more important role than min or max values. 

3.5   System Environment Context Properties 

Definition: A System Environment Context property is a property which is determined 
by other properties and by the state of the system environment. 
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The property depends not only on the system property determined by the usage 
profile, but also on the environment in which the system is used (denoted by Ck in 
(10)). This case of composition is very much related to the “Usage dependent prop-
erties” type of composition, because the set of system profiles include a subset of 
all usage profiles. However, the property itself can be different in different contexts 
(i.e. surrounding environment) in which the system is placed. By this we emphasize 
that it is not possible to determine the value of the property even the if the usage 
profiles are known. An example of such a property is safety. As the safety property 
is related to the potential catastrophe, it is obvious that in different circumstances, 
the same property may have different degrees of safety even for the same usage 
profile. We can argue that these properties are out of the scope of the predictable 
assembly, as they depend on the surrounding environment. In contrast to “composi-
tionally” deriving assembly properties from component properties, the approach for 
such kinds of properties is more like “given the system environment and the system 
properties, what are the requirements on the assembly and component properties. 
Nonetheless, system environment context properties are also dependent on compo-
nent properties. Further, for most of the cases an environment can be assumed or 
even be required for a usage profile.  

A system can exhibit numerous properties and certainly not all of them have the 
same characteristics; some are easy to perceive and measure while others are very 
difficult to analyze, or measure (for instance administrability). Analyzable proper-
ties, which can be measured, are potential candidates for automatic reasoning about 
the behavior of a system. Properties that depend on the environment in which a 
system is deployed are generally hard to derive from the component properties. 
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4   Composition of Properties 

For a classification it is important that it is complete and orthogonal. The complete-
ness assumes that all cases fit into the classification. The orthogonally means that a 
particular case belongs to and only to a particular type in the classification. The pre-
sented classification is an idealization and an abstraction; in systems, in particular in 
complex systems, we could have many properties that are important for the stake-
holders but are by their nature not precisely and formally specified, and which have 
different manifestations at component and system levels. While the question whether 
there are other types of properties, i.e. that there are types which do not fit into the 
classification cannot be formally justified or falsified, we can certainly find properties 
whose composition is the result of a combination of the principled types described in 
the previous section. For this reason it is of interest to see which combinations of 
these basic types are feasible and which combinations are of fundamental character. 
Further, there is a question related to recursive composability. Similarly to the ques-
tion “can we provide component models that support recursion, in which we treat 
assemblies as components?” we can state a question: which properties and under 
which constraints are recursively composable?  

In this section we discuss these two aspects of composability: composition of dif-
ferent types of properties and recursive compositions. 

4.1   Composition Combination of Different Types of Properties 

We are analyzing here a possibility of combining basic types of properties; can a 
system property be a result of a combination of different composition types? Theo-
retically we can have 26 combinations (single, double, triple, fourfold and fivefold 
combinations) of basic property types. Some of the combinations do not make sense. 
For example, a derived (emerging) property by definition cannot be at the same time a 
directly composable property. Similarly, combinations between directly composable 
and usage-dependent, or system environment-related properties are not feasible. This 
reduces the number of combinations. Further we shall see that some of the combina-
tions cannot be found in practice.  

In [11] we have analyzed and classified many properties grouped with respect to 
different concerns and validated the classification by inquiring a dozen researchers 
through a questionnaire to classify almost 100 properties. Since in general the proper-
ties and their definitions are the result of concerns, limitations and requirements it is 
possible to find an arbitrary number of different properties. To make the questionnaire 
manageable we have collect properties in groups, which correspond to different con-
cerns (such as performance, dependability, usability, business, etc.). The results of the 
questionnaire indicated that there are many properties, in particular emerging proper-
ties, which are a combination of two, three or more basic classification types.  

Here follows all possible combinations of the basic types of properties and identify 
those which we have never seen in practice (indicated by N/A), and give examples of 
possible combinations. From Table 1 we can see that a rather small number of combi-
nations seem to be feasible.  
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components? An ideal situation would be to have a means of using a hierarchical 
and recursive model which permits the same reasoning on all levels of the hierar-
chy.  

We can distinguish two types of assemblies supported by existing component 
technologies. The first is the 1st  order assembly which is not treated as a compo-
nent in the component model. This type of assembly is merely a set of components 
integrated together, creating an application or a part of an application. In this case 
an assembly is seen as a virtual boundary of the component set and not as a separate 
entity. An assembly of the 1st order does not follow the semantics of a component. 
The second type of assembly is hierarchical which means that the assembly, created 
from components, is treated as a new component inside the component model.  

There are different criteria which must be satisfied if an assembly is to be treated 
as a component.  The basic criteria are the ability to provide recursive principles on 
(i) operational (construction) interface, (ii) component deployment and (iii) compo-
nent quality properties. 

The way to obtain the property value of an assembly is different from obtaining 
assemblies from components, and a recursive composition of properties is not re-
lated to the (recursive) constructions of assemblies. Rather it depends of the type of 
the property. For example the directly composed properties are by definition recur-
sive; for recursive assemblies these properties will be recursive. In this way a prop-
erty of an assembly of assemblies will be a composition of assembly and compo-
nent property functions. For example, the properties of type (a) from the section 3 
will be derived in the following way: 
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For the memory consumption case in equation (2), we have: 
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For derived properties, it is in general not possible to achieve recursion. The same 
is valid for component properties which are not relevant on the assembly level. 

5   Composability of Dependability Properties 

To illustrate the property classification, we take dependability as an example. De-
pendability is defined as the ability of a system to deliver service that can be  
trusted and the ability of a system to avoid failures that are more severe and frequent 
than are acceptable to the users. According to [1] dependability is a complex property 
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including six basic attributes, namely, availability, reliability, safety, confidentiality, 
integrity and maintainability.  

The questions of interest to component-based software engineering or development 
are: 

− To which category belong the dependability properties? In particular, which of 
the dependability properties are emerging or derived system properties, and 
which are both system and component properties? 

− How are these properties in a component-based system related to other com-
ponent properties? 

− To which extent (and how) can these properties can be determined from com-
ponent properties? 

− To which extent can the unpredictability of these properties be minimized and 
how much is it related to the uncertainty of the component properties? 

Reliability 
The definition of reliability originates from the probability that a system will fail 
within a given period of time. The probability of failure is directly dependent on the 
usage profile and context of the module under consideration. One possible approach 
to the calculation of the reliability of an assembly is to use the following elements 
[20,21]: 

− Reliability of the components – Information that has been obtained by testing 
and analysis of the component given a context and usage profile; 

− Usage paths – Information that includes usage profile and the assembly struc-
ture. Combined, it can give a probability of execution of each component, for 
example by using Markov chains. 

A model based on this approach needs the means for calculating or measuring com-
ponent reliability and an architecture which permits analysis of the execution path. 
Component models that specify provided and required interface make it possible to 
develop a model for specifying the usage paths. This is an example in which the 
definition of the component model facilitates the procedure of dealing with the 
quality attribute. The system reliability can be analyzed by (re)using the reliability 
information of the assemblies and components (which can be derived or measured). 

Availability 
Availability is defined as the probability of a module being available when needed. 
The difference between reliability and availability is that availability is not only 
dependent of the system properties but also on a repair process, which implies that 
the availability of an assembly cannot be derived from the availability of the com-
ponents in the way that its reliability can be derived from the reliability of its com-
ponents.  If the repair rate of the components are known, it also must be known the 
repair time of the system integration. In a larger context, non run-time attributes 
must be taken into a consideration; availability is related to the maintenance and 
support of the components constituting the assembly. 
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Safety 
Safety is an attribute involving the interaction of a system with the environment and 
the possible consequences of the system failure [12]. It is a system attribute, neither 
a component nor an assembly attribute. Its safety depends on where and how the 
system is deployed. Since safety is a system attribute that is dependent on the sys-
tem’s environment, a means for analyzing safety is a top-down architectural ap-
proach, a decomposition rather than composition. Examples of such approach can 
be found in [2,27] In the analysis process, the components’ attributes are used as 
selection criteria or are identified as demands that should be met. For this reason a 
component-based approach might not have the apparent advantage – on the con-
trary, if the starting idea is a reuse of existing components, the components’ attrib-
utes cause new constraints and in this way might decrease the system safety. How-
ever, when the constraints are identified and unambiguously related to the con-
straints on the system level, the system safety can increase. Also, some attributes, 
such as reliability, might improve the accuracy of the system safety prediction, 
especially if known or measured when used in other applications. 

Confidentiality and Integrity 
Security properties, confidentiality and integrity, defined as follows apply to de-
pendable systems [1].  

− Confidentiality is defined as a measure of the absence of unauthorized disclo-
sure of information; 

− Integrity is defined as the absence of improper system state alterations. 

From the definitions it is apparent that these attributes are not directly measurable 
and composable, and this is the main obstacle to the development of a theory for 
their prediction. Confidentiality and integrity are emerging system attributes that 
can be tested and analyzed on the system and architectural level but not on the 
component level. Usage profiles can be used for testing and analysis, but it is im-
possible to automatically derive these attributes from the component attributes. 

Maintainability 
Maintainability is related to the activities of people and not of the system itself, 
although there exists self-repairable systems which in some cases can reconfigure 
themselves in order to continue to provide services. Component technologies might 
provide support for dynamic upgrading/deployment of components which can im-
prove the maintainability of a system. In this case the maintainability is much a 
matter of component technology, and not of the component itself. The system archi-
tecture thus has an impact on maintenance. 

There are many parameters that can be measured and then used to estimate the 
maintainability of a code (for example McCabe Metrics for complexity [13]). These 
parameters can be identified for each component. It is however not clear how these 
parameters can be defined on the assembly level. One possibility is to define a mean 
value of all components normalized per lines of code.  



276 I. Crnkovic, M. Larsson, and O. Preiss 

 

6   Conclusion 

The full advantage of the component-based approach to developing software will 
only be achieved when, in addition to a compositional reasoning of a system’s func-
tionality, we are able to more easily and accurately predict the system behavior with 
its quality attributes. When systems are designed and build from components, many 
system properties can be derived from the component properties. Hence, a generic 
support for the definition and measurement of the properties, which is built into the 
component models and technologies, would be greatly welcomed. However, the 
predictability of properties does not depend only on such a support in the compo-
nent models but more on the types of properties themselves. Consequently, there is 
no silver bullet to deal with all types of properties. For each type of property, a 
theory of the property, its relation to the component model, composition rules and 
their contextual dependence and relation to requirements must be known.  

Dependability properties belong to a class of properties which compositions are 
the most difficult; they are system properties and are result of different properties 
on component level, and system usage context. The feasibility of a bottom-up ap-
proach is questionable, but a more feasible challenge is to achieve an incremental 
composability when adding a new or modifying a component in a system, and being 
able to reason about the system properties from the properties of the old system and 
the properties of new component. 

Because no generic approach will do, the paper suggests a classification of prop-
erties according to their principled way of compositional reasoning. Each type of 
the classification is characterized by the required parameters for obtaining predict-
ability on the system level. Some types show clear composable characteristics, 
while others are not directly related to compositions.  

The existing component models differ considerably and how the assemblies’ and 
components’ properties are treated will be highly dependent on these models, espe-
cially for those properties that are directly composable or are related to the architec-
ture. For example, if the component model has independently deployable compo-
nents with a 1st order assembly model, it is likely that the properties of the compo-
nents cannot be propagated further than the assembly level without considering the 
environment.  

In spite of diversity of properties, technologies, and theories, it should be possi-
ble to create reference frameworks that by identifying type of composability of 
properties can help in estimation of accuracy and efforts required for building com-
ponent-based systems in a predictable way. These frameworks can be built for par-
ticular component-models in combination with architectural solutions and particular 
domains. Our future work will continue in these directions in which different com-
ponent technologies and architectural solutions in the domain of embedded systems, 
such as automotive or automation systems will be considered. 
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Abstract. In service-oriented computing, services are dynamically built as an 
assembly of pre-existing, independently developed, network accessible 
services. Hence, predicting as much as possible automatically their 
dependability is important to appropriately drive the selection and assembly of 
services, in order to get some required dependability level. We present an 
approach to the reliability prediction of such services, based on the partial 
information published with each service, and that lends itself to automatization. 
The proposed methodology exploits ideas from the Software Architecture- and 
Component-based approaches to software design. 

1   Introduction 

The service-oriented computing (SOC) paradigm has recently emerged as a new 
approach to the development of complex distributed applications in a timely and cost-
effective way [14]. According the SOC paradigm, an application is built as 
composition of services (including both “basic” services, e.g. computing, storage, 
communication, and “advanced” services that incorporate some complex business 
logic) provided by several independent providers. A strong overlapping exists 
between this paradigm and component-based development (CBD) approaches [18]. 
As a distinguishing feature, the SOC paradigm requires that services are provided as 
Internet accessible functionalities that can be discovered, selected and assembled in 
an automated way. The “Web services” and “Grid computing” frameworks represent 
standardization efforts in this area [4, 6, 7]. 

An important issue for applications built in this way is how to assess the degree of 
trustworthiness one can have about the resulting service quality, for instance their 
performance or dependability characteristics. In particular, the prediction of such 
characteristics is important to drive the selection of the services to be assembled [3 
(chapt. 9)]. In this respect, automatic and efficient predictive analysis methodologies 
should be devised, to remain compliant with the SOC requirement that most of the 
activities connected with service discovery and composition should be performed 
automatically.  

In this paper, we focus on dependability aspects, and provide an approach to predict 
the reliability of a service, defined as a measure of its ability to successfully carry out 
its own task when it is invoked. The main goal of this approach is to define an 
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automatic and compositional way for the reliability prediction, that reflects the 
underlying structure of a service realized as an assembly of other services, exploiting 
information published by each assembled service. To achieve this goal, we exploit 
ideas taken from Software Architecture- and Component-based approaches to 
software design. 

Approaches to the reliability analysis of service- and component-based systems 
have been already presented (e.g. [5, 15, 17, 19]). We briefly discuss them in a 
“related work” section (section 5). What distinguishes our approach is the exploitation 
of a “unified” service model that helps in modeling and analyzing different 
architectural alternatives, where the characteristics of both “high level” services 
(typically offered by software components) and “low level” services (typically offered 
by physical devices) are explicitly taken into consideration. This model allows us to 
explicitly deal also with the reliability impact of the infrastructure used to assemble 
the services and make them interact. Moreover, we point out in this work the 
importance of considering the impact on reliability of service sharing, that could 
typically happen in a SOC framework, when we assemble originally independent 
services in such a way that they exploit some common service, so being no longer 
independent. Finally, to better support compositional analysis, we also point out the 
need of explicitly dealing with the dependency between the input parameters for some 
service and the input parameters of cascading service requests that the service itself 
generates, as also pointed out in [9].  

The paper is organized as follows. In section 2 we discuss general issues for an 
architecture-based approach to quality of service (QoS) prediction in a SOC/CBD 
framework. In section 3 we focus on reliability, and present an approach to its 
architecture-based prediction, that lends itself to automatization. In section 4 we 
present a simple example, while in section 5 we discuss related work. Finally, section 
6 concludes the paper. 

2   An Architectural Approach to Predictive QoS Analysis 

According to the Software Architecture approach [2], an application is seen as 
consisting of a set of components that offer and require services, connected through 
suitable connectors, where the latter model some selected “interaction infrastructure”. 
In particular, special emphasis is given to the connector concept, that is intended to 
embody all the issues concerning the connection between offered and required 
services [12]; hence, a connector can also represent a complex architectural element 
carrying out tasks that are not limited to the mere transmission of some information, 
but could also include services such as security and fault-tolerance; this means that a 
connector can be seen as the proper architectural element to model also the 
middleware aspects of some assembly of software services and components. 

We note that, in a broad SOC perspective, who assembles services should be 
allowed to select not only “high level” services, needed to implement some complex 
functionality, but also the underlying “low level” services; these include the 
interconnection architecture (communication services) used to make high level 
services interact. Different ways of connecting the same set of high level services can 
have different impact on the overall non functional characteristics (as a simple 
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example, a “local call” connection to some service is generally more dependable and 
more efficient than a “remote procedure call” (RPC) connection). Hence, besides 
being an important architectural concept, connectors are valuable also from the 
viewpoint of QoS prediction for a service assembly. Indeed, by providing an easily 
identifiable architectural elements, connectors support and encourage the explicit 
modeling of the interconnection infrastructure; moreover, they facilitate the QoS 
analysis and comparison of different interconnection architectures, that in principle 
can be modeled by simply connecting the same set of services using different 
connectors models, each with its own QoS characteristics. 

For these reasons we base our analysis methodology on the Software Architecture 
“component-connector” framework, remarking in particular that the connector 
concept should be explicitly introduced in any analysis of some non functional 
characteristic of SOC applications. Within this framework, according to a SOC 
perspective, we adopt a unifying “service model”, looking at both components and 
connectors as entities offering and requesting services (with the services of 
connectors often implicitly invoked to support some higher level service). As an 
example, an RPC connector offers a connection service implicitly invoked during the 
invocation of some remote service, and requires in its turn processing and 
communication services to marshal/transmit/unmarshal the service request and 
response.1 

In a SOC framework (but, also, more generally, in CBD approaches) a service is 
expected to publish a description that includes not only of its signature, but also a 
description of a related set of required services, plus a set of attributes and constraints 
that further specify conditions for a correct matching between offered and provided 
services. 

To support predictive analysis of some non-functional property of a service 
composition, for example its reliability, it has been argued that each service (or 
resource)  should also publish some analytic interface (see [10]), that is a 
representation at a suitable abstraction level of the actual service behavior and 
requirements, that lends itself to the application of some analysis methodology. Based 
on the above discussion, we assume that an analytic interface is associated with each 
service offered by both resources and connectors, which should include: 

(a)  an abstract description of the offered service; 

(b)  an abstract description of the flow of requests that will be possibly addressed to 
other resources and connectors to carry out that service (abstract usage profile). 

We now give some detail about how these two parts of an analytic interface can be 
structured. 

With regard to point (a), the abstraction should concern both the service itself and 
the domains where its formal parameters, used to specify a particular service request, 
can take value; for example, the abstract description of a processing service can be 

                                                           
1  In the following, we will use generally the term resource rather than component, since the 

latter seems too strictly tied to the idea of software resource. Hence, by resource we mean 
something that offers one or more services (and possibly requires others), thus encompassing 
both software components and physical resources, like processors, communication links, or 
other devices (like printers and sensors). 
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defined in terms of a service that executes a single kind of “average” operation (at 
some constant speed) and whose formal parameter is the number of such operations 
that must be executed, rather than their actual list. In general, the abstraction with 
respect to the real service parameter domains can be achieved by partitioning the real 
domain into a (possibly finite) set of disjoint subdomains, and then collapsing all the 
elements in each subdomain into a single “representative” element [9]. The 
processing service example is an extreme case, where the entire set of operations is 
collapsed into a single average operation. 

With regard to point (b), we assume that the abstraction consists in giving a 
probabilistic description of the flow of requests. For this purpose, we assume that the 
“abstract” flow of requests generated by a service is modeled by a discrete time 
Markov chain. Each node of the Markov chain transition diagram models a set of 
actual (abstract) service requests, with the underlying assumption that the requests in 
this set must be fulfilled according to some completion model before a transition to 
the next node can take place. We discuss in the next section possible completion 
models. 

Finally, we make the consideration that it is reasonable to assume the possible 
existence of a dependence between the parameters that characterize a particular 
service and the cascading service requests that it addresses to other resources. For 
example, the size of a list to be ordered sent as input parameter to some sort service 
has an impact on the request of processing service addressed by the sort service itself 
to some processing resource. This has an obvious impact also on the resulting QoS. 
Indeed, continuing with the sort service example, the probability of a hardware failure 
occurrence in the processing resource while sorting the list increases with the time 
taken to sort the list, i.e. with the size of the list sent as parameter to the sort service. 

For this reason, we argue that modeling this dependency is necessary to achieve a 
real QoS compositional analysis. To model it, we assume that both the transition 
probabilities and the actual parameters of the service requests in a flow may be 
defined as functions of the formal parameters of the offered service they are 
associated with. In the next sections we will provide examples to better clarify this 
point. 

3   Architecture-Based Reliability Prediction 

As stated before, the reliability of a service is a measure of its ability of completing its 
task, where, according to the adopted framework, a service is generally realized by a 
suitable composition, through appropriate connectors, of services offered by several 
resources. Let us introduce the following notation: 

• S (Sj): a service offered by some resource (including a connector); 
• fp: the list of formal parameters associated with a service S; 
• apj: the list of actual parameters used by a service S to call a service Sj; to model the 

dependency (as discussed above) between apj and fp, we assume that the actual 
parameters apj of Sj are a function of the formal parameters fp of S (apj = apj(fp)); 
however, for the sake of conciseness, in the following we will write apj instead of 
apj(fp); 
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• Pfail(S,fp): the probability that a service S is unable to complete its task, expressed 
parametrically in terms of the service formal parameters fp; 

• Pfail(Sj,apj): the probability that a service Sj is unable to complete its task, when Sj 
is invoked with actual parameters apj; 

• i: a state of the Markov chain modeling the flow of service requests generated by S; 
• Start: a special state of the Markov chain, representing the entry point for the flow it 

models; 
• End: an absorbing state of the Markov chain, representing the successful completion 

of the service task; 
• Ai1, ... Ain: the set of service requests included in a state i of the flow, i Start, i End 

(i.e., Aij ≡ call(Sj,apj)); note that by “service request” we mean all the activities 
involved in the service invocation and execution. 

Using this notation, the reliability of S can be expressed as 1 - Pfail(S,fp). In the 
following, we show how to calculate Pfail(S,fp), exploiting information about how S 
has been architected. To this end, we distinguish two types of services: 

• simple services, that do not require the services of any other resource to carry out 
their own task; these include, for example, the services offered by basic processing 
and communication resources (“cpu” and “network” resources), but also the 
services offered by “black-box” software components strictly tied to a particular 
computing platform; the reliability of such services depends only on the service 
internal characteristics/operations; we assume that this reliability is a known 
function of the service formal parameters; 

• composite services, that do require the services of other resources to carry out their 
own task: these services include, typically, those offered by software components; 
each of these services is characterized by a flow modeling its usage profile of other 
service 2 their reliability depends on both the service internal characteristics/ 
operations and on the reliability of the services they require; moreover, it also 
depends on the reliability of the connectors used to connect required and offered 
services; we assume that a composite service can only provide information about 
the “internal part” of its reliability, expressed by some suitable reliability measure 
(e.g., software failure rate in the typical case of software components). 

Moreover, in the following discussion, we assume a “fail-stop” behavior (i.e. each 
failure causes a service interruption), and that no repair occurs [11]. 

3.1   Reliability of Simple Services 

As stated above, we assume that the reliability of such services is explicitly expressed 
by some known function of the service parameters. In this section, we limit ourselves to 
explicitly presenting examples for the cases of processing and communication services. 
For each of these services, we use the name of the resource offering it as name of the 
service itself, under the assumption that such resources offer a single service. 
 

                                                           
2  Note that a service offered by a software component that does not call any other component, 

but can be deployed to different computing platform is a composite service in our framework, 
since it can be modeled as a service issuing requests for a processing service. 
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Let us consider first a cpu-type resource offering a processing service. In an abstract 
characterization of this service (analytic interface), we model it as a service with an 
integer valued abstract parameter N, used to specify the number of operations to be 
executed during a request for that service. Moreover, the processing service analytic 
interface includes two attributes: a speed s (operation/time-unit) and a failure rate λ 
(failure/time-unit). Assuming an exponential failure rate, the probability of a failure 
during the execution of N operations is expressed by the following function of N: 

 Pfail(cpu,N) = 1 - e
-λN/s

       (1) 

Then, let us consider a network-type resource offering a communication service. The 
analytic interface of this service is characterized by an integer valued abstract parameter 
B representing the number of bytes to be transmitted. Moreover, the interface includes 
two attributes: a bandwidth b (byte/time-unit) and a failure rate β (failure/time-unit). 
Assuming again an exponential failure rate, the probability of a failure during the 
transmission of B bytes is expressed by the following function of B: 

 Pfail(net,B) = 1 - e
-βB/b 

      (2) 

Within this type of services, we also include as a special case the connectors that do 
not have any flow of service requests associated with them. In our unified “service-
connector” framework, this is in particular the case of connectors we use to model a 
simple association between required and offered services, like a “local processing” 
connector between a software component and the cpu-like resource of the same node 
where the component is located.3 These “connectors”  are used only for modeling 
purposes, but do not actually make use of any resource and do not correspond to any 
tangible artifact; hence we assume that their failure probability is equal to zero. 

3.2   Reliability of Composite Services 

In this case, we are considering services carried out by resources that exploit the 
services offered by other resources, as modeled by the flow of requests specified in their 
analytic interface. This case also include “interaction” services offered by connectors 
that exploit other resources (typically communication and, possibly, processing 
resources) to carry out them; in the following we do not make any basic distinction 
between such connectors and generic complex resources, from the viewpoint of the 
reliability evaluation of the service they offer. 

Given our flow model, we have: 

Pfail(S,fp) = 1 - p*S,fp(Start,End)      (3) 

where p*S,fp(Start,End) denotes the probability of reaching in any number of steps the 

End absorbing state for the flow associated with S, starting from its Start state. For a 
flow modeling only the functional aspects of a service execution, this probability would 
be trivially equal to one. To calculate a non trivial value for such a probability, we must 
specialize the flow model to the dependability domain, taking into consideration the 
possibility that a failure may occur at any flow stage. In terms of our model this means 

                                                           
3  In a UML modeling framework, this type of connector would correspond to a deployment 

relationship between a software service and a processing resource. 
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that we must add a “failure structure” to the flow model; under the fail-stop and no 
repair assumptions, this corresponds to adding a new Fail absorbing state to the Markov 
chain, and then adding an additional transition from each state i of the Markov chain to 
the Fail state with probability pS,fp(i,Fail), weighing with a probability 1-pS,fp(i,Fail) the 

already existing transitions to other states (except transitions from the Start state, since 
we assume that it does not represent any real behavior, and hence no failure can occur in 
it). Standard Markov methods can be exploited to evaluate p*S,fp(Start,End) once the 

failure structure has been added to the original flow model (see, for example, [19]). 
Hence, the basic problem is how to evaluate pS,fp(i,Fail) for each node i. In this section, 

we focus on issues related to the evaluation of pS,fp(i,Fail), exploiting architectural 

information. 
Recalling that each state i includes a set of service requests Ai1, … Ain, we must take 
into account the following  factors to evaluate pS,fp(i,Fail): 

a) the failure probability of each service request Aij included in state i; 
b) how the individual failure probabilities of the Aij’s combine together to determine 

pS,fp(i,Fail). 

Point b) in turn requires considering the following factors: 

b1) a completion model for the requests Ai1, … Ain, to determine when a successful 
transition to the next flow stage is enabled, even if some Aij has failed; 

b2) the existence of possible dependencies among the Ai1, ... Ain, that can affect their 
overall failure probability. 

In the following, we first briefly discuss separately these points, and then, based on 
this discussion, we go into the details of the evaluation of pS,fp(i,Fail).  

Failure probability of each Aij. To evaluate the probability of a failure of Aij, that 
we denote by Pr{fail(Aij)}, 4  we must take into account the following failure 
probabilities: 

• Pfail_int(Aij): probability of “internal” failure, i.e. depending on the internal 
characteristics of the service issuing the request Aij; we discuss at the end of the 
section some issues concerning a more precise definition of this probability; 

• Pfail_ext(Aij): probability of “external” failure related to the service request Aij (i.e. 
“call(Sj,apj)”); this probability depends in its turn on the probability of failure of 
the service Sj itself, and on the probability of a failure in the connector Cj that 
“transports” the request, that is on Pfail(Sj,apj) and Pfail(Cj,[Sj,apj]) (where 
[Sj,apj] is the actual parameter for the connection service offered by Cj).5 

Completion model for Ai1, ... Ain. We take into consideration two possible 
completion models for the service requests in state i: 

                                                           
4  Note that Pfail(Sj,apj) and Pr{fail(Aij)} denote the probability of two different events, where 

the former corresponds to a failure during the execution of the service Sj once it has been 
called, while the latter corresponds to a failure during the overall invocation process of Sj, 
that includes a failure during the execution of Sj. 

5  For the sake of simplicity, we are identifying the name of the connector with the name of the 
service it offers. 
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• AND model: all the requests Ai1, ... Ain must be fulfilled to enable a transition to the 
next state; 

• OR model: at least one of the requests Ai1, ... Ain must be completed to enable a 
transition to the next state.6 
Other completion models could be considered as well (e.g. “k out of n”), but we do 

not analyze them in this paper. 

Dependency model for Ai1, ... Ain. With this model we take into account the sharing 
of some common service, that could typically occur in a SOC framework: 

• no sharing: the requests Ai1, ... Ain do not share any common service, and hence are 
assumed independent of each other; 

• sharing: the requests Ai1, ... Ain do share a common service, and hence their failure 
probabilities are not independent. 

In particular, in the sharing model we restrict our attention to the case where all the 
Ai1, ... Ain are actually requests for the same service Si offered by a single resource, 
accessed through a single connector Ci. Note that a very simple example for this case 
is when n software components are allocated to the same processing node, thus 
requesting the same processing service offered by that node. 

Using the above defined probabilities, and completion and dependency models, we 
can now define expression for the probability pS,fp(i,Fail) of a failure in state i of the 

flow. Let us start with the calculation of pS,fp(i,Fail) under the two completion 

models: 
• AND model: the failure of any activity in state i causes a failure in that state; hence 
we have: 

pS,fp(i,Fail) = 1 - Pr{ ∧
j = 1

n nofail(Aij)}     (4) 

• OR model: the failure of all the activities in state i causes a failure in that state; 
hence we have: 

pS,fp(i,Fail) = Pr{ ∧
j = 1

n fail(Aij)}      (5) 

Now, let us see how we can calculate the two probabilities in the right hand side of 
(4) and (5) under the two defined dependency models. 

• no sharing model: for the AND case, thanks to the independence assumption among 
the Ai1, ... Ain, we can rewrite (4) as: 

pS,fp(i,Fail) = 1 - 
j =1

n
∏ (1 - Pr{fail(Aij)})     (6) 

analogously, for the OR case, we can rewrite (5) as: 

pS,fp(i,Fail) =
j =1

n
∏ Pr{fail(Aij)}      (7) 

                                                           
6  The OR model allows us to consider, for example, the presence of fault-tolerance features 

within a component 
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According to the discussion about the failure probability of each Aij, the failure 
probability Pr{fail(Aij)} in equations (6) and (7)  can be calculated as follows: 

Pr{fail(Aij)} = 1 - (1-Pfail_int(Aij))⋅(1-Pfail_ext(Aij)) 
  = 1 - (1-Pfail_int(Aij))⋅(1-Pfail(Cj,[Sj,apj])⋅(1-Pfail(Sj,apj)))  (8) 

since each Aij does not fail only if neither an internal nor an external failure occurs, 
and, in its turn, the external failure does not occur if neither the used connector nor 
the requested service fail. 

• sharing model: in this case the requests Ai1, ... Ain are no longer independent, since 
they request the same service Si. Let us denote by extfail and noextfail the events 
“external failure occurrence” and “no external failure occurrence” in the service 
requests Ai1, ... Ain, respectively. In the AND case we rewrite (4) as follows: 

pS,fp(i,Fail) = 1 - Pr{ ∧
j = 1

n nofail(Aij) | noextfail}Pr{noextfail} 

       - Pr{ ∧
j = 1

n nofail(Aij) | extfail}Pr{extfail}  (9) 

Analogously, in the OR case we rewrite (5) as follows: 

pS,fp(i,Fail) = Pr{ ∧
j = 1

n fail(Aij) | noextfail}Pr{noextfail} 

     + Pr{ ∧
j = 1

n fail(Aij) | extfail}Pr{extfail}    (10) 

Now, note that when no external failure occurs, each Aij can only fail because of an 
internal failure; in the opposite case, that is when an external failure occurs for some 
Aij, it causes the failure of all the Ai1, ... Ain with probability one, since they share the 
same external service Si and the same connector Ci, and we have assumed that no 
repair occurs. Hence, reasonably assuming that the internal failures are independent, 
we can refine equation (9) and (10) as follows. For equation (9) we have: 

pS,fp(i,Fail) = 1 - 
j =1

n
∏ (1 - Pfail_int(Aij)) ⋅

j =1

n
∏ (1 - Pfail_ext(Aij)) 

  - 0⋅(1 -
j =1

n
∏ (1 - Pfail_ext(Aij)) ) 

  = 1 - 
j =1

n
∏ (1 - Pfail_int(Aij)) ⋅

j =1

n
∏ (1 - Pfail_ext(Aij)) (11) 

For equation (10) we have: 

pS,fp(i,Fail) = 
j =1

n
∏ Pfail_int(Aij) ⋅

j =1

n
∏ (1 - Pfail_ext(Aij)) 

  + 1⋅(1 -
j =1

n
∏ (1 - Pfail_ext(Aij))) 
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  = 1 -
j =1

n
∏ (1 - Pfail_ext(Aij)))⋅(1 −

j =1

n
∏ Pfail_int(Aij))  (12) 

Note that in equations (11) and (12) the probability Pfail_ext(Aij) can be expressed 
as: 

Pfail_ext(Aij) = 1 - (1-Pfail(Si,api))⋅(1-Pfail(Ci,[Si,api]))   (13) 

Let us now compare the expressions for the AND completion model under the no 
sharing and sharing models (i.e. expressions (6) and (8) with expressions (11) and 
(13). With some simple manipulation, we see that they are identical. Hence, under the 
fail-stop and no-repair assumption, the reliability of requests to be completed under 
the AND model is unaffected by the possible sharing of a service. 

On the other hand, let us compare the expressions for the OR completion model 
under the no sharing and sharing models (i.e. expressions (7) and (8) with 
expressions (12) and (13). In this case, we can see that they provide different results. 

These results remark the importance of carefully considering the possible 
dependencies between completion models and service sharing in the reliability 
analysis of a composition of services. 

Finally, note that in the above analysis we have introduced the term Pfail_int(Aij) to 
denote the “internal” failure probability for a service requets Aij = call(Sj,apj). We 
conclude this section by giving some suggestion about how the internal failure 
probability Pfail_int(Aij) can be defined. We recall that in a service-oriented 
approach, information about the internal failure characteristics is the only kind of 
failure-related information that a service can directly publish. For this purpose, we 
distinguish two cases: 
a) Aij is the request for a service offered by some software resource, and hence 

typically corresponds to an actual method call; in this case, the internal operations 
related to this request just consist of the “call” of such service, while other 
operations connected to the request (e.g., parameters marshaling/unmarshaling) in 
our architectural vision are captured, together with their reliability, under the 
connector concept; hence, we must give some suitable value to Pfail_int(Aij) 
reflecting the reliability of the call operation only; this value could also be set equal 
to zero, if we assume that a method call is a reliable operation that does not cause a 
failure by itself; 

b) Aij is the request made by a software component to a processing service to execute 
N operations (i.e. Aij = call(cpu,N)); this case actually corresponds to the execution 
of the “internal” operations of some component; in this case Pfail_int(Aij) must 
depend on N and represents the probability that the software code that implements 
the N operations contains a software fault that manifests itself as a failure; this 
probability should be expressed as some function of N, according to some suitable 
software reliability model. For example, assuming that the software failure rate of 
the component requesting the processing service is ϕ (that represents the probability 
of a software failure in an operation), we could write: 

 Pfail_int(Aij) = Pfail_int(call(cpu,N)) = 1 - (1-ϕ)
N

     (14) 



 Architecture-Based Reliability Prediction for Service-Oriented Computing 289 

3.3   A Recursive Procedure for the Reliability Evaluation of a Service Assembly 

The reliability evaluation methodology presented above lends itself to the definition 
of a procedure for the evaluation of the reliability of a service assembly, that can be 
easily automated. 

Let S be a (composite) service provided by some services assembly Σ, and let 
Pfail_Alg(S, fp) denote the procedure that calculates the absorbing probability in the 
Fail state for the service S with formal parameters fp. This procedure can be defined 
as follows: 

1. Pfail_Alg(S, fp) : 
2. add a Fail state to the flow of S; 
3. for each state i of the flow of S do 
4.  case (completion model / sharing model of state i) : 
5.            AND / any: f := pS,fp(i,Fail) /* (expression (6)) */ 

6.            OR / no sharing: f := pS,fp(i,Fail) /* (expression (7)) */ 

7.            OR / sharing: f := pS,fp(i,Fail) /* (expression (12)) */ 

8.   endcase; 
9.  for each outgoing transition from i to k with probability p(i,k) do 
10.   replace p(i,k) with (1-f)·p(i,k) 
11.  endfor; 
12.  add a transition from i to Fail with probability f; 
13. endfor 
14. return 1 - p*S,fp(Start,End) /* (expression (3)) */ 

Note that Pfail_Alg(S, fp) is actually a recursive procedure, as the evaluation of 
pS,fp(i,Fail) in the statements 5, 6 and 7 implies the recursive call of Pfail_Alg(Sj, ap) 

for all the services Sj that are required in state i. The bottom of this recursion is given 
by the simple services included in Σ, whose unreliability can be directly calculated as 
shown, for example, in section 3.1. At the end of the evaluation, we get Pfail(S, fp), 
that is the unreliability of the composite service realized by the assembly Σ. 

Finally, we point out that this recursive evaluation procedure does not work in the 
case of a service assembly where some services recursively call each other. In this 
case, the recursive procedure outlined above would incur in an infinite loop, and the 
assembly reliability should be expressed by a fixed point equation, for which 
appropriate evaluation methods should be devised. In this work we do not 
investigate this point. 

4   Example 

We use a very simple example to illustrate the proposed methodology. For this 
purpose, we consider a resource that offers a search service for an item in a list. To 
carry out this service, the resource requires in its turn a sort service (to possibly sort 
the list before performing the search) and a processing service (for its internal 
operations). The search service has three formal parameters, with the former two used 
to receive the item to be searched and the list, respectively, while the third is used to 



290 V. Grassi 

return the search result (true or false). In an abstract characterization of this service 
(i.e. in its analytic interface), the abstract domain of the former two parameters is the 
set of integer numbers, used to specify, respectively, the size of the element to be 
searched and the list size. Moreover, the analytic interface of this service includes an 
attribute specifying the service software failure rate ϕ. 

We consider two different ways of assembling the search service with the services 
it requires: 

• local assembly: the sort service is a local service (sort1), that is both the components 
providing the search and sort services are allocated to the same processing node 
(cpu1) providing the needed processing service; 

• remote assembly: the sort service is a remote service (sort2), that is the components 
providing the search and sort services are allocated to two different processing 
nodes (cpu1 and cpu2, respectively), connected by a communication network 
(net12). 

We assume that both sort services (sort1 and sort2) are characterized by analogous 
analytic interfaces, with one formal parameter used to receive from and return to the 
caller the list to be sorted, and an attribute specifying a software failure rate (ϕ1 and 
ϕ2, respectively). 

Figure 1 depicts the flows associated with the search and sort services, where 
beside each state it is shown the associated service request with its actual 
parameters. Note how these parameters are defined as functions of the service 
formal parameters. In this figure, q denotes the probability that the list is not 
already sorted. 

Fig. 1. Flows of the search and sort services 

For what concerns the processing nodes (cpu1 and cpu2), and the communication 
network (net12), we assume that they are modeled as resources offering simple 
processing and communication services, respectively, with each service characterized 
by one abstract parameter used to provide the number of operations to be processed, 
and the bytes to be transmitted. The two processing resources (cpu1 and cpu2) are 
also characterized by speed attributes (s1 and s2) that specify the number of 
operations per unit time that they are able to process, and by failure rates λ1 and λ2. 
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Analogously, the communication resource has a bandwidth attribute (b) that specifies 
the number of bytes per unit time that the resource is able to transmit, and a failure 
rate γ. 

Let us now consider how these services are connected. In the local assembly case, 
the search and sort1 services are connected through a “local procedure call” (LPC) 
connector, while in the remote assembly case the search and sort2 services are 
connected through an RPC connector. From a reliability viewpoint, these connectors 
play a role similar to composite services, as they require other services (processing 
and communication) to carry out their own interaction service. 

Figure 2 shows the flows associated with these connectors, where the input and 
output (abstract) formal parameters ip and op are intended to represent the size of the 
data transmitted from the client to the server and vice-versa, respectively. In the local 
case, we assume a shared memory communication model; hence, the lpc connector 
requires only a processing service (modeling the few operations needed for the 
control transfer from search to sort1 and vice versa). Given the shared memory 
assumption, we assume that the number of these operations is independent of the 
value of ip and op, and is given by some constant l. We also assume that the software 
failure rate of this connector is equal to zero (i.e. the software used to code its 
functionality is perfectly reliable). 

On the other hand in the remote case, both the processing requirements of the rpc 
connector for the parameters marshaling and unmarhaling and the communication 
requirements are defined as linear functions of ip and op (through the constants c and 
m, respectively). Also for this connector we assume a software failure rate equal to 
zero. 

Finally, figures 3 and 4 graphically show the two assemblies. Note that in these 
figures we also depict some “local processing” connectors, modeling the association 
between the local processing requested by some resource and the processing service 
offered by the node where that resource is allocated. As discussed in section 3.1, these 
connectors are pure modeling artifacts, and their reliability is equal to one. 
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Fig. 2. Flows of the LPC and RPC connectors 
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Fig. 4. Graphical representation of the remote assembly 

 

Fig. 5. Flow of the search service augmented with the failure structure 
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To evaluate the reliability of this assembly of services, we must add failure 
information to the service flows, as discussed in section 3.2. As an example, figure 5 
shows the modified search service flow. 

Now, we can evaluate the search service reliability using the methodology of 
section 3. Given the simplicity of the example, we can directly calculate the service 
reliability in a symbolic way, without using matrix-based operations to numerically 
calculate the absorbing probabilities into the Fail state for each service flow. These 
operations should be implemented for more complex examples. 

Thanks to the possibility of a symbolic evaluation, we can directly start from the 
bottom of the recursion described in section 3.3, going up to upper levels. In 
particular, looking at figures 3 and 4, we readily see that we can identify three 
recursion levels, namely: 

• level 0 (simple services): cpu1, cpu2, net12, loc1, loc2, loc3, loc4, loc5; 
• level 1 (services requiring only level 0 services): lpc, rpc, sort1, sort2; 
• level 2 (services requiring level 0 and level 1 services): search. 

Note that under the level 0 services we include also those offered by the “local 
processing” connectors loc1, loc2, loc3, loc4, loc5. As remarked above, their 
reliability is equal to one. On the other hand, for the cpu1, cpu2, net12 services we 
assume that their reliability is given by the expressions (1) and (2), respectively. 
Hence, we have: 

 Pfail(cpu1,N) = 1 - e
-λ1·N/s1

      (15) 

 Pfail(cpu2,N) = 1 - e
-λ2·N/s2

      (16) 

 Pfail(net1-2,B) = 1 - e
-γB/b 

     (17) 

Now, let us consider the level 1 services. For the sortx service (x = 1, 2) we get, 
using its flow model augmented with the failure information, and expressions (6), (8), 
(14) and (16): 

 

Pfail(sortx,list)  = Pr{fail(call(cpux,list·log(list)))} 
  = 1 - (1-Pfail_int(call(cpux,list·log(list)))  
   ⋅(1-Pfail(loc2)) 
   ⋅(1-Pfail(cpux, list·log(list))) 

  = 1 - (1-ϕx)
list·log(list)

·1·e
-λx⋅list·log(list)/sx

   (18) 

Note how in expression (18) the formal parameter N of the cpux reliability 
expressions (15) and (16) has been substituted by an actual parameter list·log(list) 
defined as function of the sortx formal parameter “list”. 

On the other hand, for the connector services lpc and rpc, we note that the 
assumption of zero software failure probability for their code implies that 
Pfail_int(call(cpu1,l)) = Pfail_int(call(cpu1,c·ip)) = Pfail_int(call(cpu1,c·op)) = 
Pfail_int(call(cpu2,c·ip)) = Pfail_int(call(cpu2,c·op)) = 0. Using this assumption, the 
flow models of figure 2, and expressions (6), (8), (15), (16) and (17), we get (we omit 
some intermediate result): 
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Pfail(lpc,ip,op)  = Pr{fail(call(cpu1,l))} 
  = 1 - (1-Pfail_int(call(cpu1,l))  
   ⋅(1-Pfail(cpu1, l)) 

  = 1 - e
-λ1⋅l/s1

      (19) 

Pfail(rpc,ip,op)  = 1 - (1 - Pr{fail(call(cpu1,c·ip))}) 
   ⋅(1 - Pr{fail(call(net12,m·ip))}) 
   ⋅(1 - Pr{fail(call(cpu2, c·ip))}) 
   ⋅ (1 - Pr{fail(call(cpu2,c·op))}) 
   ⋅(1 - Pr{fail(call(net12,m·op))}) 
   ⋅(1 - Pr{fail(call(cpu1, c·op))}) 

  = 1 - e
-λ1⋅c(ip+op)/s1

·e
-γ⋅m(ip+op)/b

·e
-λ2⋅c(ip+op)/s2

  (20) 
Also in this case we can note how the actual parameters of the requests addressed to 

the cpux and net12 services are expressed as a function of the lpc and rpc formal 
parameters, thus achieving a more effective composition of the reliability of each 
service with the requests it receives. Finally, let us consider the level 2 search service. 
Using its flow model and expressions (6), (8), (14), (15) and (16), we get (omitting 
again some intermediate result): 

Pfail(search,elem,list,res) 

  = (1 - q)·Pr{fail(call(cpu1,log(list)))} 
   + q·(1 - (1-Pr{fail(call(cpu1,log(list)))})·(1-

Pr{fail(call(sortx,list))}) 

  = (1 - q)·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

) 

    + q·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

 
   ⋅(1-Pfail_int(call(sortx,list)) 
   ⋅(1-Pfail(connect,elem+list,res)) 

   ⋅(1-Pfail(sortx,list)))    (21) 
where connect = lpc, rpc; 

Assuming that a method call made within the search service is perfectly reliable (i.e. 
Pfail_int(call(sortx,list) = 0) we get from (21): 

Pfail(search,elem,list,res) 

  = (1 - q)·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

) 

    + q·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

 
   ⋅(1-Pfail(connect,elem+list,res))⋅(1-Pfail(sortx,list))) 

  = (1 - q)·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

) 

    + q·(1 - (1-ϕ)
log(list)

·e
-λ1⋅log(list)/s1

 
   ⋅(1-Pfail(connect,elem+list,res)) 

   ⋅(1-ϕx)
list·log(list)

·e
-λx⋅list·log(list)/sx

)   (22) 
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In expression (22), the (1-Pfail(connect,elem+list,res)) term can be substituted by 
expression (19) or (20) when connect = lpc (and x=1) or connect = rpc (and x=2), 
respectively. Finally, depending on the values assigned to the services parameters and 
attributes (e.g. list size, failure rates, processor speeds, network bandwidth) we can 
use expression (22) to determine which of the two service assemblies considered in 
this example provides a higher reliability. 

 

Fig. 6. Reliability comparison of the local (continuous lines) and remote assemblies (dashed 
lines), for different values of ϕ1 and γ 

Figure 6 shows an example of comparison between the reliabilities of the two 
assemblies, as a function of the list size, with respect to different values of the 
reliability of the local sort service and the reliability of the communication 
infrastructure used to access the remote service. In particular, we have set ϕ1 = 10-6 or 
ϕ1 = 5⋅10-6 for the sort1 local service software failure rate. On the other hand, we 
have set ϕ2 = 10-7 for the sort2 remote service software failure rate (i.e. one order of 
magnitude smaller than ϕ1), while the net12 communication service failure rate is γ = 
10-1, γ = 5⋅10-2, γ = 2.5⋅10-2 or γ = 5⋅10-3. Hence, looking only at the reliability of the 
two services, the local service is considerably less reliable than the remote one, and 
the remote assembly should be preferred. However, this simple consideration does not 
take into account the impact of the communication infrastructure reliability. As figure 
6 shows, the remote assembly is actually more reliable only when the net12 failure 
rate is γ = 5⋅10-3. For the higher values of γ considered in this example, the local  
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assembly is always more reliable when the sort1 failure rate is ϕ1 = 10-6. Only if we 
assume a still higher sort1 unreliability (ϕ1 = 5⋅10-6) the remote assembly is more 
reliable for γ values greater than 5⋅10-3 and less than 5⋅10-2. 

5   Related Work 

Approaches to the reliability analysis of service- and component-based systems have 
been already presented (e.g. [5, 15, 17, 19]). According to the classification proposed 
in [8], [5] presents a path-based model, where the reliability of an assembly of 
components is calculated starting from the reliability of possible component execution 
paths. This model only considers sequential executions of services (so excluding, for 
example, OR completion models), and does not take into account the impact of the 
interconnection architecture; it also does not consider possible dependencies among 
services in the evaluation of the overall reliability. On the other hand [15] and [19] 
present state-based models [8], where probabilistic control flow graphs are used to 
model the usage patterns of components. In both models also the impact of the 
interconnection architecture is considered, through the introduction of the concept of 
connector reliability. The model presented in [15] considers only a single activity in 
each flow graph node (so excluding, for example, OR completion models), while the 
model in [19] take into consideration the AND and OR completion models for 
multiple activities in a single flow graph node. However, both models do not consider 
the possible dependency between services caused by service sharing, thus implying 
that they implicitly assume a no sharing dependency model. Also the model discussed 
in this paper is a state-based model, where we take into account both AND and OR 
completion models, and the possibility of service sharing (even if in the limited form 
of a single service shared by other services). 

For what concerns the dependency between the request a particular service has to 
fulfil and the cascading service requests that it addresses to other resources, this 
concept has been explicitly introduced and modeled in [15] through the concept of 
parameterized contract. In this perspective, the Markov chain obtained by 
augmenting the flow graph of an offered service with suitable failure probabilities 
is presented in [15] as an example of such a contract, as it depends on (is parametric 
with respect to) the failure probabilities of the services requested within that flow. 
In our model we refine this concept, by explicitly introducing the possibility that 
the failure probability of each requested service in a flow may be expressed as a 
function of the parameters of the service modeled by that flow. As shown in the 
example of section 4 this provides a better support to the compositional reliability 
analysis. None of the models discussed above introduce explicitly the service 
parameters in the reliability evaluation, so that compositional analysis is not 
completely supported. 

In our model (as also in [15] and [19]), we assume that the Markov model 
specifying the service usage profile is completely known. Issues related to the 
actual construction of this Markov model are discussed, for example, in [16], where 
in particular it is shown how a Hidden Markov model can be used to cope with the 
imperfect knowledge about the service behavior. 
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Finally, we point out that if we want to truly integrate the reliability prediction of 
a service assembly with the automatic service discovery, selection and composition 
procedures, a key point is the embedding of the analytic interface outlined in 
sections 2 and 3 into the machine-processable languages used to support the service 
description and composition. We recall that basic elements of this interface are: a 
model of the service usage profile (probabilistic flow graph), a model of the 
“internal” failure probability, (abstract) models of service requests whose actual 
parameters are defined as function of the calling service formal parameters. 
Examples of languages that support the service description, discovery and 
composition are OWL-S [13] and BPEL4WS [1], where both are intended to 
complement and to extend the basic WSDL language, proposed as a standard for 
the service description in the Web Service protocol suite [4]. Both languages 
include syntactic constructs to specify the structure and the flow of control of a 
composite service, and to specify QoS related infomation. Hence, they already 
provide some syntactic support that can be used as starting point for the 
specification of a dependability oriented analytic interface. Starting from this base, 
to fully specify such an interface, the existing syntactic constructs of these 
languages should be suitably extended (for example adding constructs for the 
inclusion of transition probabilities in the control flow graph, and constructs for the 
specification of failure rates among the QoS related information). Moreover, these 
syntactic constructs should be bound to some underlying “reliability prediction 
engine” that implements the algorithm outlined in section 3.3. 

6   Conclusions 

We have presented an approach to the reliability prediction of an assembly of 
services, that allows to take into account in an explicit and compositional way the 
reliability characteristics of both the resources and interaction infrastructures used 
in the assembly. We remark that predicting the reliability of an assembly of services 
actually represents only one side of the reliability assessment of an assembly of 
services, with the other side represented by appropriate monitoring activities to 
check whether the assembly of selected services will actually achieve the predicted 
reliability. In this paper we have focused on reliability prediction only. 

However, several points require further investigation for what concerns the 
prediction of reliability. They include, for example, the dependency model, that 
should be extended to deal with more complex dependencies, and the fail-stop 
assumption, that should be released to deal also with error propagation aspects [11]. 
Moreover, as discussed at the end of section 5, another point, that is important in a 
true SOC perspective, is how to make as much as possible automatic the reliability 
prediction of a service assembly. This point involves the definition of reliability 
evaluation algorithms, and the inclusion in SOC oriented machine-processable 
languages of appropriate constructs to express the dependability-related 
characteristics of resources and connectors.  
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Finally, we would like to remark that, even if our focus is on reliability issues, 
the presented ideas can also be extended, with appropriate modifications, to other 
QoS aspects (e.g. performance). 
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Abstract. In a previous paper we described a fault injection strategy that ap-
plies risk-based analysis to select the system’s riskiest components for testing. 
Among other criteria, this analysis considers the number of upstream and 
downstream dependencies of a component in a system. In order to obtain this 
number, we propose the use of architectural-level dependency analysis. One 
advantage of an analysis at architectural level is that systems may often contain 
COTS components from which no source code is available. The approach is il-
lustrated with a case study, and the preliminary experimental results are also 
discussed. 

1   Introduction 

The increased pressures on time and money make component-based software devel-
opment a current trend in the construction of new systems. In this method, instead of 
bespoke design and development, a system integrates off the shelf (OTS) components 
developed by third parties.  

Despite the potential benefits of component-based development, the validation of 
components and component-based systems is still a challenge. The difficulty stems 
from lack of knowledge [5] [34]. On the one hand, component users do not know the 
acquired component’s quality level, and even if it is known, there is no guarantee that 
the component will present the same quality level when used in a new context. This 
means that the acquired component must be validated each time it is used in a new 
context. However, users generally do not have enough information about the OTS 
component to perform this task.  

On the other hand, using high-quality components is no guarantee that the overall 
system will present high quality. The complexity of the interaction among compo-
nents can cause unexpected errors to emerge from component interfaces [35]. Accord-
ing to [35], 50% of bugs are detected after component integration, not during compo-
nent development. 

There is an increasing demand nowadays for high quality, critical and non-critical 
applications. For example, both e-commerce and military systems require availability 
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and security. In order to achieve these quality properties, a focus on solutions at archi-
tectural level can be foreseen. Research into describing software architectures with 
respect to their dependability properties has recently gained considerable attention 
[31] [28] [33]. 

A good architectural solution is an important step, but it is not enough to guaran-
tee that the final system will present the required quality level. Systems are increas-
ingly complex, integrating thousands or millions of (hardware and/or software) com-
ponents. There are numerous interfaces among these components, which increase 
design complexity. Components’ interfaces comprise the assumptions that compo-
nents make about each other. Architectural mismatch [13] can arise when the expecta-
tions of a component do not match those of other components or the environment in 
which it operates. Furthermore, the coupling between components to achieve the 
system’s goals makes them highly interdependent; consequently, a failure in one 
component can rapidly affect the state of other components [35]. 

Validation is thus a necessary step to establish whether an architectural solution 
achieves the required system qualities. Moreover, it is important to assess the robust-
ness of the interfaces with respect to component failures as well as problems that 
enter the system from external sources [34]. 
We propose the use of Software-Implemented Fault Injection (SWIFI) to observe how 
interfaces behave when data passing through them are intentionally corrupted.  SWIFI 
is a useful complement to other validation techniques, in that it allows us to observe 
whether the failures of components or interfaces among components affect the ser-
vices provided by the system.  

Our approach is based on the introduction of interface errors, that is, errors are in-
troduced at a component’s interface by affecting input or output parameters, as well 
as returned results. A component’s internal faults can generate errors that may propa-
gate to its interfaces. Thus, interface errors may represent a component’s failure 
modes as well as the failure modes of other components that interact with the target 
component.  Errors are introduced using a software-implemented fault injection tool, 
Jaca [20], in order to validate Java applications. Jaca does not require access to an 
application’s source code, since it is a solution for the validation of a system that may 
be composed of multiple, generally black-box OTS. All instrumentation needed for 
fault injection and monitoring purposes are introduced at byte code level. 

Given that a component-based system may contain too many components and in-
terfaces, it may not be practical to inject errors in all of them. Although the system 
may be composed of OTS components, from which no source code is available, the 
system is not considered a black-box; the system architecture, representing how vari-
ous components are interconnected is known. We will use this knowledge to help 
select a subset of components and interfaces in which to inject errors. One approach 
that has been used in tests is to perform the selection based on risk analysis: more test 
effort is concentrated on those parts of the system that may present higher risk of 
causing the system to fail [4] [27]. Various factors can be considered when evaluating 
a component’s risk. Complexity metrics can be one of them [27]; in a previous work 
we used a set of OO metrics to select a component to inject [22]. One limitation of 
this approach was the need of source code to better categorize such metrics.  

In the current approach we use dependency analysis, at the architectural level, to 
guide fault injection. In brief, the idea is to select components based on upstream 
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dependencies (components whose failure will cause cascading failures in the rest of 
the system) as well as downstream dependencies (components particularly affected by 
failures in the rest of the system) [4]. 

In the following section we give a fault injection overview. In Section 3 we de-
scribe the dependency analysis approach that we use in this work. The proposed strat-
egy is discussed in Section 4; a case study is presented in Section 5 and the tests’ 
results are presented in Section 6. Finally, in Section 7 we present our conclusions 
and future research. 

2   Fault Injection Overview  

2.1   Fault Injection   

Fault injection techniques have been widely used to evaluate a system’s dependability 
and to validate its error-handling mechanisms. The technique provides a means to 
dynamically demonstrate the software quality and to observe the system’s behaviour 
[36]. By doing so, it is possible to know how the system will behave in the presence 
of faults in its components or in its environment. Fault injection enables accelerated 
system testing under stressful conditions, and can help uncover design and implemen-
tation faults in the systems [3]. This technique is useful to validate the solutions de-
signed to handle exceptional situations.  

Fault Injection may be used to validate a fault tolerant system, to help with fault 
removal aimed at reducing the occurrence of faults and their severity, as well as to 
assist with faults forecasting. Fault removal and fault forecasting could be used to 
quantify dependability attributes. In this work we are interested in its fault removal 
aspects. 

Fault Injection approaches may vary according to the system life cycle in which 
they are applied and to the type of faults that are injected. Among the various existent 
approaches (see [15] for an overview), software-implemented fault injection has been 
widely used [9] [12] [26]. It has become more popular due to its lower costs (it does 
not require specially developed circuits, as does hardware fault injection), better ver-
satility (it is easier to adapt codes to make fault injection in another system than to 
adapt of circuits) and better control, which together facilitate the observation of the 
system during tests. One approach of software-implemented fault injection consists of 
injecting anomalous input data that come into the software through its interface [36], 
instead of altering a system’s code or state in order to emulate the software [34]. This 
study uses this approach, allowing software acquirers to determine its robustness. The 
software can be stated as robust if it is fed by anomalous input and does not propagate 
into a failure, demonstrating that the software can produce dependable service even in 
presence of an aggressive external environment [36].       

For software-implemented fault injection the most common faults considered are 
memory faults (which alter the content of memory positions), processor faults (which 
affect the content of registers, the result of calculus, control flux or instruction), bus 
faults (which affect the addressing lines or data that are being transmitted by the bus) 
and, in the case of distributed systems, communication faults (which affect messages 
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that are transmitted through a communication channel: they can be lost, altered, du-
plicated or delayed)[15].  

Recently more attention has been given to the consequences of software faults. 
Software faults represent the faults resulting from mistakes committed by developers 
during system development or in modifications made in the phases of maintenance. 
Software faults have turned out to be the main causes of field failures. 

In this work we are using a software-implemented fault injection tool, called Jaca, 
to inject errors and test the system’s robustness. A similar approach was presented by 
Ballista Project [17] and Mafalda tool [11], but in those cases the errors were injected 
in the parameters of operating system calls instead of the component interfaces.  
TAMMER [9] is another similar work in which the injection of interface faults is used 
to observe fault propagation focusing on code coverage. The tool Jaca, used in this 
work, is presented in section 2.2. 

2.2   The Jaca Tool  

Software Fault Injection can affect either the code (source or assembler) or the state 
of a target system. To alter a system’s state, a tool is needed to inject faults or errors 
during runtime. These tools differ according to the mechanism used to trigger faults 
[15]. Most of these tools are aimed at emulating hardware faults, so faults are injected 
at low-level, affecting processor registers, I/O device drivers and memory positions. 
Nowadays, with the increasing importance of software faults, some studies present 
tools that aim to inject faults at higher level during runtime [9] [12] [26].  

Jaca offers mechanisms for the injection of interface errors in object-oriented sys-
tems written in Java language. Jaca is an evolution of the FIRE tool [26] and it uses 
reflective programming. The reflection mechanism introduces a new architectural 
model by definition of two levels: the meta-level (implements fault injection and 
monitoring features) and the base level (implements the system’s functionalities) [19]. 
Computational reflection allows the target system’s instrumentation to carry out its 
functions through introspection (useful for the system’s monitoring) or by altering the 
system during runtime (useful for the injection) without changing the system’s struc-
ture. Jaca does not need the application source code to perform fault injection. This 
occurs because Jaca was implemented using the Javassist reflection toolkit [6], which 
allows the instrumentation to be introduced at byte code level during load time. The 
source code independency is an important feature of the tool, allowing the validation 
of a system that may be composed of multiple third-party components. Jaca’s current 
version can affect the public interface of an application by altering attributes’ values, 
method’s parameters and return values. The tool needs to get a class’s interface in-
formation in order to inject the errors, and it can do this through introspection when 
the source code is not available. Jaca is described in more detail in [18], [20]. 

2.3   Related Work 

The use of fault injection to validate component-based systems is an active research 
area. This work is an evolution of that presented in [21] in which we test an isolated 
component. In that work we used an application to activate the component under test; 
it differs from the current work in two respects: (i) the target is no longer a component 
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in isolation but a system integrating various heterogeneous components, some of 
which may be black-box; (ii) the units considered are no longer classes, but compo-
nents. Hence, the strategy cannot use source code dependent metrics as in [21] and the 
architecture becomes essential for planning fault injection. This work also extends 
that presented in [23], where we introduced the idea of architectural relevance for 
testing a component-based system without describing our criteria in detail. Our cur-
rent work tackles the dependencies criterion. 

A closely related approach to the one presented here is the Interface Propagation 
Analysis (IPA) [33, ch.9.2]. IPA takes a black-box view of software components, 
injecting faults at the interfaces between hardware and software, as well as between 
operating system, microkernel and so on. The difference is that we are not considering  
all components as black-box.  

TAMER [9] is another study which describes a tool that injects interface faults 
aimed at observing fault propagation. The main focus of that work is code coverage. 
Here we are not interested in source code coverage but in the exceptions raised by the 
component, as well as whether these exceptions cause the whole system to fail. 

The work in [12] is quite similar to ours since they use a tool based on computa-
tional reflection, called Java Wrapper Generator (JWG). JWG modifies the bytecode 
at load time, which in turn provokes an exception and allows the observation of the 
exception-handlers behaviour. In Fetzer’s case, the focus is on objects, whereas in our 
approach the focus is on a component that may be composed by several classes.  

MAFALDA (Microkernel Assessment by Fault injection Analysis and Design 
Aid) [11] is another tool that provides quantitative information on COTS microker-
nels to support their integration into dependable systems using error confinement 
wrappers. The proposal of MAFALDA is the injection of errors in the parameters of 
operating system calls, instead of the parameters between components as in our case. 

The dependency analysis at the architectural level used in our work is strongly in-
fluenced by the study in [32] where they propose the chaining concept to reduce the 
portions of an architecture that must be examined in order to test or debug a system. 
In our work we use this idea to select the components to inject and monitor the fault 
injection. 

From the Ballista approach [17] we derive the definition of error model, which is 
proposed by the authors as a means to test robustness. 

We also borrow ideas from studies that use risk for test costs reduction. Many 
risk-based testing strategies have been proposed [4] [27] [30]. The approach presented 
here is particularly related to [4], from which we use the heuristic risk-based testing 
presented below. 

3   Dependency Analysis at the Architectural Level 

Abstractly, software architecture is a representation of the system based on the com-
ponents that integrate the system and their interactions [29]. The set of components 
integrated in a system can be component interaction elements or connectors, data 
elements, processing (or behavioural) elements or state elements that contain  
the current state of the component both in terms of data and processing elements. 
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Architecture diagram is a high-level model of software system that represents the 
system’s components and how they are interconnected.  

A component may be defined as “unit of composition with contractually specified 
interfaces and explicit dependencies. A software component can be deployed inde-
pendently and is subject to composition by third parties” [8]. A component’s provided 
interface allows one component to provide information or stimulus to another compo-
nent, whereas the required interface allows one component to ask for information or 
receive stimulus from other components.   

Dependency analysis has been traditionally based on control and data flow rela-
tionships associated with functions and variables of a program [32]. This has worked 
primarily for compiler optimization. It has been used widely in software engineering 
activities such as program understanding, testing, debugging, reverse engineering, and 
maintenance [7]. It has also been useful for code reviewers and architects when as-
sessing the coupling within an application or library. A limitation of the traditional 
approaches is that they are generally source-code based. This is not useful to us for 
two main reasons: (i) the source code of some OTS components might not be avail-
able; (ii) polymorphism (the ability to bind a reference to more than one object) and 
dynamic binding (where a specific bond between a reference and an object is deter-
mined at runtime) replace explicit compile-time binding with implicit runtime bind-
ing. This means that a receiver of a polymorphic message is only known at runtime. 
In this way, the interaction among components is better determined through the analy-
sis of the system’s architecture. 

Dependency relationships at the architectural level appear from the connection be-
tween components and the constraints on their interaction [32]. 
There are several architectural-based dependencies’ approaches [16] [1] [24]. The 
approach used in this work is based on Chaining, dependency analysis technique that 
was primarily aimed at reducing the part of the architecture to be examined for a 
given purpose, for example testing and debugging [32]. Individual links in a chain 
associate architecture components that are directly related. A chain of dependencies 
includes association among components that are indirectly related.  

There are three types of chains: (i) affected-by chains, which contain the set of 
components that could potentially affect the component of interest; (ii) affects chains, 
which contain the set of components on which the component of interest can poten-
tially have an effect; (iii) related chains, which are a combination of affected-by and 
affects chains. 

The next section presents how the chaining technique can be useful for fault injec-
tion. 

4   Using Dependency Analysis for Fault Injection 

Dependency analysis can be useful for fault injection in many ways: (i) to help select 
target components, e.g. components whose interfaces are to be injected; (ii) to estab-
lish monitoring points to determine error propagation, and (iii) to select a minimal set 
of components to monitor for debugging purposes in case of system failure. 

As discussed above, components with high affects chain and affected by depend-
encies are possible targets for fault injection.  
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Figure 1 illustrates the chains of a given component. In this figure, the component 
designated as “Target Component” has 5 downstream dependencies (number of ele-
ments in its affected-by chain) and 4 upstream dependencies (number of elements in 
its affects chain). Faults that are introduced in the links indicated in the figure can 
have an effect on other components that do not need to be directly injected. Faults in a 
link between the target component and an affects chain component represent failure 
modes in components used by the target one (its successors) and could be impacted 
by a change in the target component. Conversely, faults in a link with an affected-by 
component represent failure modes from components that use the target one (in other 
words, failures on its predecessors) and may affect it.    
 

 

Fig. 1. Chains 

We also need to determine where to observe in order to understand the effect of 
the corruptions. When a selected component does not have the required observability 
(easiness of monitoring) the observation point should be transferred to another com-
ponent in the same chain (affected-by or affects).  

In this way, we can assess the failure tolerance of the interfaces regarding compo-
nent failures and corruptions that may enter into the system from external sources. 

We must bear in mind that in this context the related chains can comprise any com-
ponents that integrate the system (protective wrappers, exception handles and so on). 

Our approach encompasses the following steps: 

1. Modelling the system’s architecture 
2. Constructing the dependency matrix 
3. Determining the chain for each component 
4. Determining the component to be injected 
5. Determining the failure mode 
6. Determining the values to be injected 
7. Determining the expected outcomes 

The following sections describe these steps in more detail. 

Target
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Affects
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4.1   Modelling the System’s Architecture 

The kinds of dependencies that can be considered among components are influenced 
by the notation used to represent the system’s architecture [32]. In our approach we 
are interested only in behavioural relationship, particularly in input and output inter-
actions among the components. Figure 2 presents an example of the architectural 
model considered in this study where the interactions among components through the 
provided and required interfaces are in relief. 
 

 

Fig. 2. The System Architecture Model 

4.2   Constructing the Dependency Matrix 

We use a matrix to represent the components relationships as suggested in [32]. Al-
though the chaining technique considers different types of connections, only the con-
nections between a provided interface and a required interface are being considered in 
this study. In the dependency matrix, the columns represent the dependent in the rela-
tionship. The rows represent the object of dependency in addition to any events gen-
erated in the system’s environment that can be acquired by an interface (e.g. a user 
interface - UI). Thus, if component A is dependent on B, the cell at column A and row 
B hold that relationship (indicated by an “x” in this cell). Table 1 shows the matrix 
corresponding to the architecture in Figure 2. 

Table 1. Dependency Matrix 

 Component1 Component2 Connector Component3 Component5 
Connector  X     
Component3 X  X    
Component4    X   
Component5     X  
Exception Handler      X 
Component1 X      

 

Component 1

Component 2

Component 3

Component 4

Component 5

Conector
Exception
Handler

UI
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4.3   Determining the Chain for Each Component 

A component’s chain can be determined by creating links when there is a mark (X) in 
a cell, which indicates that a relationship holds. To determine the affected-by chain 
for a component, select its corresponding column and locate cells containing an “X” 
in this column. The component in the corresponding row is in the affected-by chain of 
this component. To determine the affects chain for a component select its correspond-
ing row and locate cells in this column containing an “X”. The component in the 
corresponding column is in the affects chain of this component. Both affected-by and 
affects chain are transitive; once you create a link you construct in a similar manner 
the next link, beginning by the newly identified element in the chain.  

For example, to determine the affected-by chain for Component2 in the matrix pre-
sented in Table 1, and to identify which component potentially affected it, it is neces-
sary to take the column Component2 and locate all the related rows in the matrix. 
Only the Connector has been identified. Continuing by the transitivity property, one 
must take the column Connector and locate all the related rows in the matrix, reaching 
Component3. Taking the column Component3, Component4 and Component5 are 
identified and finally the column Component5 identifies the Exception Handler. In 
this way, the affect-by chain of Component2 is Connector, Component3, Compo-
nent4, Component5 and Exception Handler.  

The affects chain can be obtained in a similar way beginning with the row, for ex-
ample, taking Component3. To identify which components it may affect, one obtains 
Component3 affects chain as Component1, Connector, Component2 and information 
acquired from the boundary of the system through the user interface (UI).  

4.4   Determining the Candidate Targets 

To select a component in which to inject errors we are considering the number of 
components in affects chain and affected by chain of each component. Based on 
Pareto’s 80/20 rule [25], the components whose sum of both chains is classified be-
tween the top 20%, must be selected to inject the faults. 

As mentioned above, these components may affect many others, so we can observe 
the impact of faults without having to inject all the components’ interfaces. 

Based on Table 1, where we have six rows, if we apply Pareto’s 80/20 rule we 
should inject errors into one or two components. The highest sum of affected-by and 
affects chain belongs to Component3, which has this sum equalling seven, followed 
by Component5 and ExceptionHandler equalling six. If the tester must make a choice 
and inject error in only one component, Component3 should be selected; otherwise, 
he should select Component5 and Exception Handler, too.  

However, there is a need to cope with constraints on controllability (easiness to in-
ject faults) imposed by fault injection tools. Jaca, namely, can only inject and observe 
components written in Java. Another limitation is that it can only affect parameters or 
return values that are not objects. As Jaca, other fault injectors also have their limita-
tions. If the selected component is not considered controllable, the related chain can 
be used to select another target component. 
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4.5   Determining Where to Inject 

Once the components that should be tested are selected, each component should be 
considered (CUT) in order to determine in which of their interfaces to inject errors. 
As we are considering only the connections between a provided interface and a re-
quired interface, our focus is on parameters and returned values that flow between 
components. The locations to inject are: 

(i) input parameters provided to the target component by its predecessors 
(according to links in affected-by chain);  

(ii) a returned value (or output parameter) provided by the target component 
to its predecessors (according to links in affected-by chain); 

(iii) input parameters provided by the target component to its successors (ac-
cording to links in affects chain); 

(iv) a returned value  (or output parameter) provided to the target component 
by its successors (according to links in affects chain); 

(v) a parameter or returned value that comes into the system through its 
boundary components.    

4.6   Determining the Values to Inject 

To determine which values we should inject into input/output parameters or returned 
values of the operations in a component’s interface, one should consider the compo-
nent’s specification when there are valid domains of these values or constraints im-
posed by the component’s contract. In such case, boundary value testing can be used  
[25]. However, if these domains are not specified, the Ballista approach may be used 
[17]. In this case, the values to be used for each data type are presented in Table 2. 

Table 2. Values to Inject based on Ballista’s Approach 

4.7   Determining the Expected Outcomes 

An output value space is the set of all possible output values of the program. In this 
set, as a result of an experiment, the system may fail or tolerate the injected faults. 
Tolerance to the injected faults means that the system outputs the expected results, i.e. 
that the architecture offers the required tolerance level. Otherwise, if failure occurs it 
means that modifications to the system are needed. Failures may be reported, raised 
exceptions or returned wrong values. Application hangs, application crashes or erro-
neous values as outputs characterize a non-reported failure.  

Data Type Values to Inject 
Integer  0, 1, -1, MinInt, MaxInt, neighbour value (current value ± 1) 
Real Floating 
Point 

0, 1, -1, DBLMin, DBLMax, neighbour value (current value * 
0.95 or * 1.05) 

Boolean inversion of estate (true -> false; false ->true) 
String Null 
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In order to decide if an output value is a wrong value or not, an oracle mechanism 
is needed. An oracle is a predicate on input/output pairs that checks whether the de-
sired behaviour has been implemented correctly by some function [34]. Oracles can 
be obtained from predicates that characterize the system’s expected properties. These 
predicates can be implemented as contract assertions. 

To observe the outputs, the tester should collect the assertions at the system’s inter-
faces and the output generated by the system, such as, messages to users, exit codes, 
generated files, output to hardware devices, exceptions that appear at the system’s 
interface, among others. 

Furthermore, error propagation is also observed. Predecessors and successors are 
useful for the observation of errors propagation, too. Errors can be cancelled (corrupt 
data is flushed or overwritten) or hidden (corrupt data remains unchanged but un-
used); these are considered as tolerated by the system. An error is detected when error 
handlers are activated. Detected errors are considered as recovered when the error 
handler successfully recovers the system’s state, meaning that the system terminates 
successfully; otherwise a failure of exception handlers may cause the system to fail. 

To observe error propagation, the tester should monitor the exception handlers or 
other error detection mechanism and monitor the injected component output to check 
if a bad input produces a bad output. 

Table 3 presents the observation points related to the injection points presented in 
the failure mode in section 4.5. They are useful to monitor the system when the injec-
tion has been carried out for:   

Table 3. Values to Inject based on Ballista’s Approach 

Failure Mode Observation Points 
(i) the direct successors and the predecessors of the target component 
(ii) the direct predecessors of the component 
(iii) the target component or its direct predecessors, the first compo-

nent in the direct successors’ affects chain 
(iv) the target component or its direct predecessors 
(v) the direct successors, the direct predecessors of the target compo-

nents 

In all cases, the exception handler and the system boundary components should be 
observed to detect the outgoing data and raised exceptions that will be seen by the 
users. 

It is possible that the direct CUT’ predecessors or successors do not have enough 
observability (easiness of monitoring). If so, the tester must find in its respective 
chain the next predecessor or successor directly linked to the CUT. The newly se-
lected component should be as closer as possible to the CUT. 

The observation points will guide the tester in developing, monitoring and runtime 
checking capabilities.  One must bear in mind that the monitoring of the system will 
generate a logfile. Checking should be selected carefully; too little information logged 
may not be enough for debugging purposes. Too much information, on the other 
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hand, may be too time-consuming to analyze. One can choose to activate observation 
points only when a failure is detected, and then re-execute the tests. The risk, in this 
case, is when the situation that has led to a failure is an intermittent failure and per-
haps a non-repeatable one. 

5   The Case Study 

In this section we present a case study that has been utilized in our experiments. The 
system’s specification used in our case study has been retrieved from [2] and   imple-
mented by a PhD student whose work we used to better understand the system and the 
architectural aspects presented in the following sections [14].  

Anderson presented a general approach to engineering protective wrappers as a 
means to detect error and undesired behaviour in a component-based system, com-
posed by some COTS components. The wrappers were also used to launch appropri-
ate recovery actions. Thus, the protective wrappers, allow detection and tolerance of 
typical errors caused by unavailability of signals, violations of constraints and oscilla-
tions.  In [2], the author presented experiments’ results using a Simulink model of a 
steam boiler system, together with an Off-the-Shelf (OTS) Proportional Integral and 
Derivative controller (PID controller).  

5.1   The System 

The overall system has two main components: the boiler system and the control sys-
tem. The control system comprises a PID controller (the OTS items), and the ROS, 
which is simply the remainder of the control system. The control system is repre-
sented by three PID controllers dealing with the feed water flow, the coal feeder rate 
and the airflow. The ROS consists of: (i) the boiler sensors. These are “smart” sen-
sors, which monitor variables providing input to the PID; (ii) controller: Drum Level, 
Steam Flow, Steam Pressure, Gas Concentrations and Coal Feeder Rate; (iii) actua-
tors. These devices control a heating burner, which can be ON/OFF, and adjust 
inlet/outlet valves in response to outputs from the PID controller: Feed Water Flow, 
Coal Feeder Rate and Air Flow; (iv) configuration settings. These are the “set-points” 
for the system: Oxygen and Bus Pressure, which must be set up in advance by the 
operators. Smart sensors and actuators interact with the PID controller through a stan-
dard protocol. 

5.2   The Architectural Solution 

The system’s architecture presented in [2] was extended in [14] and was implemented 
as a fault tolerant system. As a system that integrates OTS components, the system 
should consider these components as a potential source of faults. The overall software 
system should be able to support OTS components while preventing the propagation 
of errors. So the system should be able to tolerate faults that may reside or occur in-
side the OTS components, but should not be able to directly inspect or modify their 
internal states or behaviour.  
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An architectural solution to tackle this problem was presented in [14], to encapsu-
late a COTS component adding fault tolerant capabilities, aiming to improve error 
detection and error recovery. The main concept used is the idealised C2 component 
(iC2C), which is an evolution of the C2 architectural style.  

The C2 architecture style [33] is a component-based style that supports large grain 
reuse and flexible system composition. The components in C2 architecture are inte-
grated by connectors that are responsible for message routing, broadcasting and filter-
ing. Wrappers encapsulate each component to cope with interface and architectural 
mismatches [13]. In C2 style, the system has a layered architecture.  

Each side of a connector may be connected to any number of components or con-
nectors. In C2, requests are messages that flow up the architecture, and their re-
sponses (notifications) flow down. Figure 3 shows the Boiler System architecture of 
the Boiler System that was first presented by [2] and that has now been adapted to the 
C2 style. By analysing Figure 3 we can infer that the system’s boundary is the Conn3 
component that represents the interface between the system and the hardware compo-
nents, and the Boiler Controller that represents the user’s interface. 
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Fig. 3. C2 Configuration of the Boiler System 

The iC2C style was proposed to allow the structuring of software architectures 
compliant with the C2 architectural style [33] [14]. The main idea is the separation of 
the normal and the abnormal activity parts of the idealised component, in order to 
minimise the impact of fault tolerance provisions on the system’s complexity. The 
iC2C normal activity component (represented by the Air Flow Controller in Figure 3) 
implements the normal behaviour. It is responsible for error detection during normal 
operation as well as for signalling the interface and internal exceptions. The iC2C 
abnormal activity component (represented by the AFC Error Handler in Figure 3) is 
responsible for error recovery and for signalling the failure exceptions. 

iC2C connectors are specialised reusable C2 connectors and have the following 
roles: (i) the iC2C_bottom connector (represented by the AFC_bottom in Figure 4), 
connects the iC2C with the lower components of a C2 configuration and serialises the 
requests received. When a request is completed, a notification is sent back. This re-
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quest may be a normal response, an interface exception or a failure exception; (ii) the 
iC2C_internal (represented by the AFC_internal in Figure 4) controls message flow 
inside the iC2C selection its destination; (iii) the iC2C_top connector (represented by 
the AFC_top in Figure 4) connects the iC2C with the upper components of a C2 con-
figuration. The overall structure defined for the iC2C is fully compliant with the com-
ponent rules of the C2 architecture style, allowing an iC2C to be integrated into any 
C2 configuration and to interact with components of a larger system. 

 

Fig. 4. Configuration for the Layer 3 of the Boiler System (Idealized fault tolerant component) 

To improve fault-tolerance capability, a protective wrapper for a COTS software 
component may be added to the system’s architecture, resulting in an idealized COTS 
component (iCOTS). In this approach, the COTS component (Air Flow controller) is 
connected to two specialised connectors (Wrapper Layer2 and Wrapper Layer4), 
which in turn act as error detectors to compose iCOTS normal activity components.  

When a constraint violation is detected, the wrappers send an exception notifica-
tion, which is handled by the abnormal activity component, following the rules de-
fined for the iC2C. The abnormal activity component is responsible for both error 
diagnosis and error recovery. The abnormal activity component reacts to exceptions 
raised by the normal activity component and either sends notifications to activate the 
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error handlers or stands as a service provider for requests sent by the error handlers. 
Figure 4 presents the configuration of the Boiler System, graphically representing all 
these ideas. The case study consists of a system implementation based on this con-
figuration. 

6   Experimental Results and Analysis 

6.1   The Case Study Dependency Matrix 

We use the architectural model presented in Figures 3 and 4 to construct the depend-
ency matrix for the Boiler System, according to what was explained in Section 4. 

For each component with a required interface we create a column in the matrix 
and for each component that has a provided interface we create a row in the matrix. 
We also create a row for the user interface (UI) and a row for the interface with the 
hardware (actuators and sensors).  

When a component requires information to a provided interface of another com-
ponent, we place a mark (X) in the corresponding cell of the matrix. For example, 
Conn2 has a required interface connected to Conn3. In the matrix presented in Table 
4, we put a mark in the cell that crosses these two components. We also place a mark 
in the respective cell of the component Boiler Controller with the UI and Conn3 with 
the hardware, since they represent the boundary components of the system. Table 3 
presents the resulted matrix. 

Table 4. The Case Study Dependency Matrix 
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6.2   Determining the Chain for Each Component 

After constructing the dependency matrix, we have to obtain the related chains for 
each component, as presented in section 4.3. These chains are represented in Figure 5. 

 

Fig. 5. Chain among components 

Based on the graph in Figure 5, Table 5 presents the number of components in af-
fected-by and affects chain for each component. 

Table 5. Number of affected-by and affects chain 

6.3   Selecting the Target Components 

According to Table 5, we should select the top 20% components with the highest 
number of affected-by and affects chain. As we have 13 components in the matrix 
row, we should select three components. These three components are emphasized in 

Component Affected-by Affects Total 
Boiler Controller 14 0 14 
conn1 12 1 13 
Coal Feeder Controller 10 2 12 
Water Flow Controller 2 2 4 
conn2 9 3 12 
Afc_bottom 8 4 12 
Afc_Error_Handler 7 5 12 
Afc_internal 6 6 12 
Wrapper Layer2 5 7 12 
Air Flow Controller 4 8 12 
Wrapper Layer4 3 9 12 
Afc_top 2 10 12 
conn3 1 12 13 
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Table 5. We should analyse the chain and select parameters and returned values in 
accordance with the failure mode presented in 4.5 for each component. 

6.4   Summary of the Experiments 

Table 6 summarizes the experiments executed with the three selected components. 
Experiments were also carried out with the other components to compare the results 
obtained. For the sake of space these experiments are not described, but the values 
injected are similar, according to Table 2. 

Table 6. Injection Points based on the Strategy 

Component Interface 
Method 

Injection  
Location 

Values 
to Inject 

Boiler Controller setConfiguration 1st  Parameter 0, 1, 1.1, -0.9 
DBLMax, 
DBLMin 

Boiler Controller setConfiguration 
 
 

2nd  Parameter 0, 0.1, -0.9, 
0.2, DBLMax, 
DBLMin 

BoilerController connectTop 1st  Parameter null 
conn1 connectTop 1st Parameter null 
conn1 setConfiguration 

 
 

1st  Parameter 0, 1, 1.1, -0.9, 
DBLMax, 
DBLMin 

conn1 setConfiguration 
 
 

2nd  Parameter 0, 0.1, -0.9, 
0.2, DBLMax,  
DBLMin 

conn3 ReadO2Concentration Returned Value 0, 1, 1.1, -0.9, 
DBLMax, 
DBLMin 

conn3 readSteamFlow 
 

Returned Value 0, 125, 126,  
-0.9,DBLMax, 
DBLMin 

conn3 readBusPressure 
 
 

Returned Value 0, 20, 21, -0.9, 
DBLMax, 
DBLMin 

conn3 setFeedWaterFlow 1st  Parameter 0, 1, 1.1, -0.9, 
DBLMax,  
DBLMin 

conn3 SetAirFlow 1st Parameter 0, 0.1, -0.9, 
0.2, DBLMax,  
DBLMin 

6.5   Results 

Table 7 contains the results obtained. The column “#Errors” indicates the number of 
errors injected. The “#Detections” column shows the number of times an error detec-
tion mechanism is activated. The next column indicates the number of successful 
executions, which comprises: (i) number of experiments in which the errors injected 
were non-effective (errors were masked, flushed or remained latent), (ii) number of 



 Fault Injection Approach Based on Architectural Dependencies 317 

experiments where the error detection mechanisms were activated, the exception was 
handled and the system recovered execution. The last columns contain the number of 
failures, which can be reported or non-reported. A reported failure means that an 
exception was raised and then the system crashed. A non-reported failure represents 
the case in which invalid values are not detected and the system terminates normally. 
This is a dangerous situation because the system violates safety conditions. 

The reported failure occurred when errors were injected when the connections be-
tween components and connectors were being established. In the C2 architecture, 
these connections are established during runtime. This result indicates that the C2 
framework components also need a protective wrapper. 

Table 7. Results Obtained 

#Failures Component #Errors #Detections #Successes 
Reported Non-

reported 
Boiler 
Controller 

13 4 12 1 0 

conn1 13 4 12 1 0 
CoalFeeder 
Controller 

16 0 16 0 0 

WaterFlow 
Controller 

1 0 0 1 0 

conn2 13 4 12 1 0 
Wrapper 
Layer2 

6 4 6 0 0 

AirFlow 
Controller 

6 4 6 0 0 

Wrapper 
Layer4 

12 8 12 0 0 

conn3 30 4 30 0 16 
Total 110 32 106 4 16 

As expected, the results obtained when injecting the rest of the components (ROC) 
were similar to the ones obtained when injecting the selected ones. Nevertheless, 
when analyzing the execution log that Jaca generates, we observed that the compo-
nents were effectively executed according to the dependency graph in Figure 5. 

The system’s behaviour was similar when we injected the Boiler Controller com-
ponent and the conn1 connector. One may think that only one of them could have 
been selected, but the Boiler Controller is the only component in which fault injection 
can emulate operator faults (in this case, erroneous values provided through the sys-
tem interface). On the other hand, by selecting conn1 connector it is possible to affect 
the Coal Feeder Controller, given that this component is not on the affected-by chain 
of neither the Boiler Controller nor the conn3 connector. 
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6.6   Approach Limitations 

When fault injection technique is used to validate a system, the intrusion caused by 
the tool is unavoidable. However, in previous experiments [21] we had evaluated the 
performance of a system composed by a benchmark application interacting with an 
object-oriented database management system (ODBMS). To analyze the impact of the 
tool’s intrusion on the ODBMS’s performance, the application was executed three-
fold: 1)without the use of Jaca, 2) using Jaca without the injection of errors and 3) 
using Jaca to inject errors. The tests were executed using the operations available on 
benchmark application (create, query match and query traversal). For each experiment 
the execution timing presented by the benchmark’s interface was noted (each injec-
tion was repeated five times with the same parameters and the average was taken as 
result). Before each execution of the experiment, the object manager as well as the 
operational system were re-initiated so that no information residue from the cache 
memory or temporary disk storage were used (the aim was to avoid compromising the 
results). From the results it was possible to see that the benchmark presented a similar 
performance in all case. Some small variations were observed when Jaca was used 
only to monitoring and to inject the errors, since the difference between one case and 
another is the execution of arithmetic operations between the injected error and the 
value previously existent. 

Currently, we are working to test the ODMBS through error injection, with the 
aim to evaluate the impact of those errors in the application. 

Another limitation is the analysis of the system’s architecture as we could fall into 
two situations: (i) when the system is composed of several components and (ii) when 
there is no information about the system’s architecture. In both case we could use a 
tool to analyze the dependencies. There are some tools, however, that show the de-
pendencies through the analysis of the bytecode [10] and do not need the source code 
for this purpose. 

7   Conclusion and Future Work 

This study represents a first step toward our investigation on the use of a risk-based 
fault injection approach. The main contribution of this study is the use of architec-
tural analysis to guide fault injection. Specifically, a dependency analysis technique 
was applied to establish the relationships among components, based on the interac-
tions through their provided and required interfaces.  

Fault injection can be a valuable approach to validate whether an architectural so-
lution achieves the required reliability level. An advantage in analysing a system’s 
architecture is that fault injection can be planned early in the development process. 
Another advantage is that it allows dependencies to be established even when the 
source code is not available, which can be the case when third-party components are 
used in a system.  

Dependency analysis can be used for many purposes, one of them being change 
impact determination. It can be helpful in fault injection to determine the components 
that are worth injecting. In other words, under time or cost pressures, fault injection 
efforts can be concentrated on those components whose failures may have greater 
impact on the system. Moreover, when a component of interest has low controllability 
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(or observability), the dependency relationships can be used to determine the target 
components in which to inject the faults (or to observe): components that can be af-
fected by the one of interest (to determine the impact of a faulty component on the 
rest of the system) or those that can affect the component of interest (to determine the 
effect on the latter when the rest of the system fails). 

A simple case study and its experiments’ results were used to show the benefits of 
the approach. Clearly, further experiments must be made in order to corroborate these 
results. The value of this approach will also be tested in a real world application. 
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Abstract. An approach to software development is sketched in which problem 
structuring is separated from software architecture. The problem is decomposed 
into subproblems of familiar classes that can be considered in isolation; then the 
interactions among the subproblems are considered. The architectural task is 
seen as the task of composing the software machines associated with each 
subproblem and with the more complex interactions among them. It is 
suggested that such an approach embodies a good separation of concerns that 
can contribute to achieving system dependability. 

1   Introduction 

Software architecture, according to Shaw and Garlan [9] is concerned with “... the 
organization of a system as a composition of components; global control structures; 
the protocols for communication, synchronization and data access; the assignment of 
functionality to design elements; the composition of design elements; physical 
distribution; scaling and performance; dimensions of evolution; and selection among 
design alternatives.” We may ask how these concerns impinge on system 
dependability, and—if they do—how to address them in a way that will improve 
dependability.  

An obvious analogy is with the dependability of engineered physical structures. 
Many notorious engineering failures can be traced to structural design faults. A 
structure that has been incorrectly designed to carry the imposed loads will fail in use. 
The careful investigation that follows a failure reveals the design error; popularising 
books on engineering [7, 2, 5] provide lucid explanations for lay readers. But it is far 
from clear that the analogy is sound. Software is not itself a physical product, and the 
forces imposed on it are, for the most part, not usefully quantifiable like the forces on 
a beam or a truss. There are, of course, aspects of some systems where numerical 
calculations of bandwith, network traffic, response times, or computational 
complexity are critical to successful design. But for most aspects of the broad range of 
systems this is not so.   

Another important difference is that software is extremely malleable. Software for 
a digital computer evokes a computation describable by a state machine: the 
transitions of this machine can be grouped and configured in many different ways 
without affecting the evoked computation. Presenting two candidate modularisations 
of the KWIC problem [6], Parnas wrote: 
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“The systems are substantially different even if identical in the runnable 
representation. This is possible because the runnable representation need only be used 
for running; other representations are used for changing, documenting, understanding, 
etc. The two systems will not be identical in those other representations.”  

The ‘runnable representation’ is only one of several architectures of a system. 
Other representations—and hence other architectures—are largely concerned with 
human understanding. They embody attempts to master the complexity of a real-
world problem and of the software that must lie at the core of its solution, and to 
ensure that all important concerns are adequately addressed. The goal for the software 
architect is to avoid certain classes of system failure. Not all failures can be avoided 
by software structure aimed at mastering complexity: examples of those that can not 
include failures arising from poorly designed human interfaces, configuration errors, 
unreliable hardware, slow response, inadequate throughput, and from many other 
causes. But one important class that can be so addressed is functional failure, in which 
the observable behaviour of the system is not what was intended or desired. In this 
class we include failures to meet requirements of safety and reliability, and also 
failures to repair or conceal or mitigate a malfunction where such response to the 
malfunction is, or should be, a functional requirement of the system.  

2   A View of Software Development 

The principal parts1 of a software development problem are: 

• the problem world, where the problem is located: for a lift control system this is the 
users, floors served, lift car and shaft, doors, request buttons, winding gear, 
indicator lights, floor sensors, and so on; 

• the requirement, which is the behaviour to be established and maintained in the 
problem world: for example, that the doors open only when the lift car is at a floor, 
and that the lift comes when summoned and goes to the requested floor; 

• the machine, which is the hardware-plus-software computer to be designed and 
installed in the problem world and connected to it by the machine interface: for the 
lift system this interface would be the port connections to the motor control, button 
sensors, indicator lights, floor sensors, and so on.  

The goal of the development is to devise, specify and build a machine that will 
guarantee satisfaction of the requirement by exploiting and respecting the given 
properties of the problem world. In the lift control problem these are the physical 
properties that cause the lift car to rise when the motor is set on and up, the floor 
sensor to close when the lift car arrives at the floor, and so on. 

Because the requirement and the problem world are complex, the development can 
fail in many ways. The requirement may have been misunderstood; the given 
properties of the problem world may have been misunderstood; the machine that is 
built may not satisfy its specification; the specification may be faulty—not 
guaranteeing satisfaction of the requirement even if the requirement and the problem 
world properties have been correctly understood and represented. It is a principal goal 

                                                           
1 ‘Principal parts’ is a term taken from [8]. 
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of problem structuring—that is, of problem architecture—to achieve a clarity of 
understanding that makes such failures avoidable.  

3   Architecture and Decomposition 

The key to mastering complexity is the separation of concerns, but we must clarify 
what this means for software development. Architecture is concerned with structuring 
the machine by organising it “as a composition of components” and with “the 
assignment of functionality to design elements”. This demands a structuring of 
functionality. The problem must be structured into subproblems, whose solutions can 
eventually be assigned to software components. This structuring into subproblems is 
primarily a decomposition of the problem requirement. Each subproblem has its own 
requirement and its own problem world, which is a projection of the problem world 
originally given. The problem world too demands to be structured, both to support the 
problem decomposition and to separate parts whose interactions will be mediated by 
the machine. For example, it is convenient to separate the lift car in the shaft from the 
buttons and lights. We will regard the problem world, then, as an assemblage of 
problem domains, but we must not expect that exactly the same structuring will be 
appropriate for all subproblems. As Shaw and Garlan point out, there will be a need 
for “the composition of design elements”. In fact we can go further: there will be a 
need for composition of problem elements more generally, including requirements 
and problem domains. Composition, as we shall see, is a major development task in 
its own right, with its own characteristic concerns. 

The structuring of requirements or functionality is rarely a concern in the 
established branches of engineering, where most design work is normal, rather than 
radical, design [10]. The engineer engaged in normal design knows the operational 
principle of the device to be designed: that is, how it works, and how its characteristic 
parts fulfil their special function in combining to an overall operation which achieves 
the purpose. The designer of a car, for example, does not spend effort in decomposing 
the functionality that converts fuel combustion into movement of the car. Normal 
design dictates a decomposition into reciprocating engine, flywheel, gearbox, cardan 
shaft, differential gear, half-shafts and road wheels, arranged in a standard 
configuration and connected by well-understood interfaces.2  

In software, by contrast, the decomposition of functionality is very often a task of 
radical design [1], in which: 

“... how the device should be arranged or even how it works is largely unknown. 
The designer has never seen such a device before and has no presumption of success. 
The problem is to design something that will function well enough to warrant further 
development.” 

A developer confronted by a genuinely radical design task can do little but resort to 
general principles and broadly formulated methods or design disciplines. They are, of 
course, a very inferior substitute for an established normal design practice specialised 
to the problem in hand. 
                                                           
2 Where there are choices—for example, between front-wheel and rear-wheel drive—the 

designer must choose from a very small number of such standard configurations. 
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4   A Problem Decomposition Discipline 

One approach to the development task [4] is to regard it initially, and primarily, as a 
task of problem decomposition rather than of solution design. The approach does not 
aim at ‘seamless development’: no assumption is made that the problem structure will 
suffice for the solution architecture. Taking the view presented earlier of the principal 
parts of a software problem, the developer seeks to decompose the problem into a 
collection of subproblems, each with its problem world, requirement, and machine.  

At this stage, conceptually, each subproblem is considered in isolation, supposing 
all the remaining subproblems to have been solved. For example, the service 
requirement of one identified subproblem might be to provide normal lift service on 
the assumption that the electromechanical equipment is functioning correctly, while 
the safety requirement of another is to monitor the equipment behaviour and, if 
serious malfunction is detected, to apply the emergency brake and hold the motor 
switch off. Then in the service subproblem the problem world properties take no 
account of possible malfunction or of the emergency brake. In the safety subproblem 
the problem world properties take no account of service requests or of indicator lights; 
the requirement is to monitor only the lift and door movements in response to the 
changing motor and door control states, and to take appropriate action in the event of 
malfunction. 

This functional decomposition is guided above all by a need to identify 
subproblems of known classes. The space, a priori, of possible decompositions is 
very large. By insisting, so far as possible, that the arrangement and characteristics of 
the principal parts of each subproblem must conform to a known pattern or problem 
frame [4], the developer aims at two related goals, both contributing directly to 
dependability. First, it becomes easier to grasp and communicate the decomposition 
itself because an appropriate vocabulary is ready to hand. Just as a developer who 
uses an object-oriented design pattern [3] such as Decorator can easily hold in mind 
and communicate the pattern elements and the part of the problem to which it relates, 
so too a developer who identifies a WorkPieces or an Information Display 
subproblem can do the same. Second, a known problem frame to which an identified 
subproblem conforms should already be, or can eventually become, the object of 
specialised normal design practice and knowledge. The decomposition itself is locally 
validated by the knowledge that the identified subproblem is soluble and that its 
solutions have certain properties.  

If the whole requirement has been structured as a set of subproblems of known 
classes then the design task is radical only in the sense that it is a novel composition 
of normally-designed components. The radical aspect of the development is 
restricted to the composition concerns (which we discuss in a later section), and 
does not reach down to the individual subproblems. Being able to treat the 
subproblems as objects of normal design has a large positive effect on 
dependability. This positive effect goes well beyond the saving of development 
effort by the adoption of ready-made, tested, solutions. Any software-intensive 
system that interacts with the natural world is potentially vulnerable to that world’s 
unbounded capacity for varied and novel behaviour. Developing a successful 
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system depends on identifying and selecting those behaviours that are likely to 
prove significant, and making soundly judged decisions about the system properties 
needed to deal with them effectively. This selection and judgment can scarcely be 
achieved by working from first principles: it emerges as the fruit of long experience 
of the kind that is captured in a normal design. 

5   The Impact of Decomposition 

The kind of problem decomposition discussed here departs from current common 
practice. It is basically parallel rather than hierarchical. The service and the safety 
subproblems for the lift are parallel: neither one is a part of the other; and their 
solutions must run concurrently. Monitoring for equipment malfunction must 
continue alongside the provision of lift service in the absence of serious malfunction. 
Essentially, each subproblem is directly connected to the parts of the problem world 
that are relevant to satisfying its requirement.  

This is not to say that there is no hierarchical structure anywhere in the 
decomposition. The practice of normal design is itself concerned with a structure of 
parts fulfilling a requirement, and this structure may be partly hierarchical. Normal 
design practice for the safety subproblem, for example, may dictate a decomposition 
into a monitoring subproblem and an action subproblem, and a further decomposition 
of the monitoring subproblem into a part that builds and maintains a model or 
simulacrum of the equipment and its behaviour, and another that diagnoses 
malfunctions from the model. Within the safety subproblem, then, there is a local 
hierarchical structure fitting into the larger parallel structure of the whole problem. 

The basic decomposition technique achieves a simplification of the individual 
subproblems. The developer of the service subproblem is not concerned with the 
possibility of malfunction: it has been specifically excluded from consideration. 
Similarly the developer of the safety subproblem is not concerned with whether or 
how lift service is provided: the problem world to be monitored is simply one in 
which motor and door control states are changing spontaneously, and the states of the 
door and floor sensors may or may not be changing as they should in response. This 
separation of concerns is quite subtle, but, like many successful separations, it makes 
a substantial contribution to the reduction of complexity: for the safety problem the 
rich possibilities of scheduling lift movements in response to service requests are 
abstracted away, leaving only a much simpler world of spontaneous changes of motor 
and door control states.  

Another impact of this decomposition is that the problem worlds of different 
subproblems intersect, but analysis and solution of the subproblems may depend on 
assuming different—and possibly incompatible—properties of their problem worlds. 
This difference may be no more than a difference in the granularity with which the 
behaviour of a particular problem domain is viewed; but it may be much more than 
that. For example, in the service problem the analysis assumes that the lift car always 
moves upwards when the motor state is on and up; in the safety subproblem the 
assumption is that it may fail to do so because of some equipment malfunction. 
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6   Composition Concerns 

A very large part of the complexity of any realistic system lies in the interaction of 
subproblems. A major motivation for decomposition into distinct subproblems is to 
avoid the combinatorial explosion of the possible states in each subproblem. 
Misguided decomposition can lead to gratuitous complexity, forcing the developer to 
consider combinations of requirements or behaviours that a better decomposition 
would reveal to be orthogonal. But some of the subproblem interaction complexity is 
inherent in the problem. 

The form of decomposition we are discussing here postpones consideration of 
problem interactions until the interacting subproblems have been identified and 
analysed. The interactions then present themselves in the form of composition 
concerns. If we imagine conjunctions of all the subproblems’ machine behaviours, all 
the problem domain properties on which they depend, and all their requirements, we 
may ask whether these conjunctions, taken together, constitute an adequate analysis 
and solution of the original problem? If not, what additions and changes are 
necessary? To ask and answer these questions is to address the composition concerns.  

One example of a composition concern is direct requirement conflict. The 
requirements of two subproblems may, in some circumstances, contradict each other. 
If a malfunction has been detected in the lift equipment at a time when a user has just 
pressed a button to request lift service, then the service requirement demands that the 
motor be switched on to move the lift car in response to the request, while the safety 
requirement demands that the motor be switched off. To address this concern it is 
necessary to give precedence to one of the conflicting requirements, and to describe 
their composition in a way that embodies this decision. This may, in some cases, 
demand the recognition of a fresh subproblem, in which the machines of the 
subproblems to be composed appear as problem domains and the composition rule is 
regarded as a fresh requirement to be satisfied by the new machine.  

Another example of a composition concern is interference. If the safety 
subproblem has been decomposed into a part that builds and maintains a model of the 
lift equipment behaviour, and another part that diagnoses malfunctions by inspecting 
the model, then the composition must deal with the resulting interference. The model 
is shared data for the two subproblem parts, and a suitable granularity must be chosen 
for the necessary mutual exclusion. 

As a third example, consider a decomposition of a lending library system in which 
one subproblem deals with membership, regarding book loans as atomic events, and 
another deals with loans, regarding membership as static. In their composition it is 
necessary to deal with the interactions that arise from these two simplifications. What, 
for example, is the required system behaviour when a two-week book loan is 
requested by a member whose membership is due to lapse in one week?  

These composition concerns seem to arise from the simplification 
(oversimplification, we may honestly say) of the subproblems. But they were always 
present in the original problem, and the decomposition has merely placed them in a 
context in which they can be dealt with explicitly. In a more usual approach the 
composition concerns are dealt with piecemeal as they come to attention in each 
subproblem. This piecemeal approach has severe disadvantages. One disadvantage is 
the added complication of the subproblem while its basic substance is not yet well 



328 M. Jackson 

understood: this is an unwelcome distraction from the subproblem concerns in hand. 
Another is that the composition concern itself is then being approached from one side 
rather than the other, leading potentially to an asymmetry that distorts what may very 
well be a symmetric composition concern. Another, deeper, disadvantage is that the 
composition itself may well merit the status of a subproblem in its own right, but yet 
be denied the appropriate focused concentration of the developers’ attention. 

7   Architectures and Subproblem Implementations  

Having addressed the decomposition, the resulting subproblems, and their subsequent 
composition, the development must proceed to an implementation. In the view we are 
taking here, this obligation focuses on designing a software structure that will 
accommodate all3 of the subproblem machines—including any additional machines 
arising from their composition.  

We may identify this design task with a central aspect of what is usually 
considered to constitute software architecture design. The functionality of the system, 
including the subproblem interactions, has been fully specified in the machines to be 
accommodated in the architecture. These specifications, however, are still in some 
respects abstract. Consider, to take a simple example, a pair of subproblem machines 
M1 and M2 that interact by respectively writing and reading a sequential data stream 
S. The granularity of the interaction has already been determined, but the interleaving 
of the machines, and the interfaces they present to other software components, have 
not. The possible implementations, exploiting the malleability of software, include: 

• M1 and M2 are run as separate threads communicating by a bounded buffer S that 
enforces the necessary write-read exclusion; 

• M1 and M2 are run sequentially in that order, communicating by a buffer S 
(possibly on disk) that accommodates the whole of S;  

• M2 is implemented as a procedure invoked by M1, each invocation passing a 
record of S from M1 to M2;  

• M1 is implemented as a procedure invoked by M2, each invocation passing back a 
record of S from M1 to M2.   

Choosing an implementation from such a set of possibilities is a local choice of 
architectural style: there is no reason a priori to assume that the choice of 
architectural style must be global for the system. The primary concern in architectural 
design of this kind is clearly to accommodate the subproblem machines correctly, 
ensuring that their inputs are made available, their outputs sent to the appropriate 
destinations, their persistent data preserved, enough compute cycles provided for their 
execution, and so on.  

Many other architectural concerns must also be addressed. One important such 
concern is reliability with respect to failures— for example, failures of computer 
hardware —that can not be addressed conveniently, or at all, except in the context of 
architectural design. In the problem analysis that conceptually precedes architectural 
design, it is a useful separation of concerns to assume that the computer executing the 
                                                           
3 For brevity and simplicity, we are ignoring the possibility of an implementation using 

distributed hardware. 
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software for each subproblem machine is perfectly reliable: unreliability in the 
problem world—for example, malfunction of the lift equipment—is dealt with as a 
problem decomposition concern, but computer malfunction is not. It is a part of 
architectural design to consider the use of such techniques as triple modular 
redundancy to avoid system failure in the presence of computer hardware 
malfunction.  

The possibility of failures of the software itself, due to faults in the problem 
analysis, subproblem machine specification, or programming, must also be addressed. 
In addressing requirement conflict among the composition concerns it was necessary 
to establish a precedence among requirements: the safety requirement was more 
important than the service requirement, so the safety requirement took precedence in 
the event of conflict. The conceptual relationship between these two requirements is 
clear: ideally we would like both good service and safety; but if we are ever forced to 
choose we will choose safety. A similar conceptual relationship holds with respect to 
functional dependability in the presence of software faults: ideally we would like all 
system functions to be fully dependable; but if we are forced to choose we would 
certainly prefer a system in which the safety function is more dependable than the 
service function. To ensure this ordering of dependability is an architectural concern. 
Suppose, for example, that the dependability of the requirement satisfied by our 
subproblem machine M1 is more important than that of the requirement satisfied by 
M2. Then the architect must choose an implementation structure in which software 
failure of M2 can not cause failure of M1. This consideration should probably lead the 
architect to exclude, for example, the tightly-coupled architectural designs in which 
the two components are connected by procedure call.  

8   Summary 

The approach roughly sketched here pays explicit attention to the problem 
architecture before addressing the software architecture. Subproblems of familiar 
classes can be solved more reliably than unfamiliar problems, because their solutions 
draw on the communal experience that is embodied in normal design practice. In the 
problem architecture subproblems of familiar classes are identified, and their 
composition in the problem space is then considered. The implementation and 
configuration of the resulting machines then becomes the central theme of the 
software architecture. The time ordering of development tasks implicit in this sketch 
can be viewed as a methodological prescription for development. But it can also be 
viewed more abstractly as a basis for understanding the relationship of problem 
structure to software architecture, or even for reverse-engineering an existing 
architecture to expose its structural relationship to the problem it solves. 

Both in the analysis of the problem and the design of the software architecture the 
approach could be characterised as bottom-up rather than top-down. Subproblem 
composition is deferred until the subproblems have been analysed and, essentially, 
solved. Software architecture is deferred until the components—the subproblem 
machines—that are to be accommodated are well understood. Essentially this means 
that the requirements and problem domain properties have been analysed and a 
specification has been derived of the external behaviour of the machine that can 
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guarantee satisfaction of the requirement. Much of the complexity of software 
development, and hence the potential for failure, springs from undesired or 
unforeseen interactions. By postponing composition until the parts to be composed—
whether subproblem requirements or subproblem machines—are well understood, the 
approach aims to get a better grasp of interaction complexity and so to improve 
system dependability. 
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Abstract. System abstractions such as virtual memory simplify the
construction of software by hiding details of the underlying system and
by providing higher-level functionality on which to build. While the value
of building systems as layers or hierarchies of abstractions has long been
known, the application of this principle has been uneven when it comes
to using it as the basis for architecting dependable distributed systems.
This paper gives an overview of issues that arise when using abstrac-
tions in this area and proposes some approaches to addressing these
issues. The latter include the use of translucent abstractions that ex-
pose some of the internal workings of the abstraction implementation,
customizable abstractions that allow attributes to be matched to the
application requirements and execution scenario, and an intrusion-stop
process abstraction that potentially provides a basis for architecting sur-
vivable systems.

1 Introduction

Abstraction in the context of computing systems means constructing a simplified
model of a real-life entity (e.g., a software or hardware component) or system
function by extracting the essential features while omitting unnecessary details.
A good abstraction makes it easier to understand the system structure and
facilitates the design and implementation of systems by providing higher-level
functionality on which to build. Virtual memory is a good example of such an
abstraction. It provides the easy-to-understand concept of an arbitrary size ho-
mogeneous memory segment that is made available to a program, while masking
the details of implementing such a segment using physical memory and secondary
storage.

The value of abstraction and the advantages of structuring systems as lay-
ers of abstractions have been known and used in different domains in computer
systems for many years. For example, in the area of operating system design,
the THE multiprogramming system was designed with six layers of abstrac-
tion: hardware, CPU scheduling, memory management, operator console device
driver, buffering for I/O, and user programs [1]. Similarly, such a layered ap-
proach has been used in the design of communication protocols; for example,
the seven layer ISO OSI model consists of physical, data link, network, trans-
port, session, presentation, and application layers [2]. Ideally, each layer provides
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a useful abstraction that makes the higher layers and applications easier to con-
struct. For example, a memory management layer provides the abstraction of
virtual memory, while the network layer of the OSI model provides the ab-
straction of a logical communication link or connection between a sender and
a receiver that may, in reality, be connected by a network path consisting of a
number of different types of network links, routers, and bridges.

Using the right abstractions can similarly simplify the problem of architect-
ing dependable systems. Abstractions that have been introduced for this purpose
include failure models, which can be viewed both as an assumption about the fail-
ure behavior of the underlying platform and as an abstract virtual machine that
is implemented by underlying hardware and software layers. For example, the
fail-stop processor abstraction is a virtual processor that fails only by crashing in
a detectable way [3], and that can implemented using solutions to the Byzantine
Generals’ problem [4]. Such an abstraction makes it easier to build dependabil-
ity into higher-level applications. For example, a fault-tolerant service can be
constructed on fail-stop processors using the primary-backup approach, where
the backup simply becomes active when it detects the failure of the primary.
Using the abstraction of virtual synchrony can further simplify the construction
of such fault-tolerant services by allowing applications to be written as if execu-
tion of the system was synchronous [5]. Essentially, virtual synchrony guarantees
that events such as message arrivals or membership changes are received in a
consistent order by all the distributed components of the application.

Here, we argue not only that such abstractions are important for architect-
ing dependable systems, but that the design of good systems abstractions is
in danger of becoming a lost art. Rather than focusing exclusively on algo-
rithms and protocols, what is needed in our view is more emphasis on de-
veloping abstractions that, like processes and virtual memory, are so natural
and elegant that people soon do not even realize they are abstractions. Of
course, the need to factor in dependability attributes makes the problem much
more challenging and the solutions much less obvious. Therefore, we propose
a number of extensions that can help simplify the process of developing good
abstractions.

2 Dependability Abstractions

Architecting dependable distributed systems is very difficult and system de-
signers must consider a number of issues. For one thing, programmers have to
deal with the typical complications of concurrency, such as coordinating the
use of shared data and other shared resources. Furthermore, various types of
accidental faults and intentional security attacks ranging from benign ones,
such as a message getting lost in the network, to more severe ones, such as
a computer being taken over by a malicious intruder, may occur. Since the
events may occur at arbitrary times during the execution of the software, de-
signing the software so that it behaves correctly at all times is a significant
challenge. Finally, the execution environment can be dynamic, often requiring
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the software to adapt its behavior; for example, response times or throughput
of the underlying network may fluctuate due to congestion or changes in the
load.

A number of useful services and abstractions for dependable distributed com-
puting have evolved over the years. For example, atomic multicast provides a
method for transmitting a message to a set of receivers atomically and in a
consistent order [6,7,8]. Similarly, as mentioned above, virtual synchrony pro-
vides a consistent view of process group membership and consistent ordering of
events among group members, thereby simplifying the problems associated with
failures. A variety of consistent time abstractions make it easier to construct
time-driven algorithms in distributed systems. Such time abstractions may be
virtual (e.g., logical clocks [9]) or may be based on synchronized physical clocks
[10]. Other important service abstractions include atomic actions, a collection of
operations whose execution is indivisible despite concurrency and failures [11,12];
and stable storage, storage whose contents survives failures [11].

Paradigms for structuring fault-tolerant software further simplify develop-
ing applications by essentially providing patterns for implementing applications,
services, or their underlying abstractions. The replicated state machine approach
is a paradigm for building fault-tolerant services using replication [13]. A ser-
vice is constructed using a collection of identical deterministic state machines,
with client requests being sent to all replicas for execution using atomic ordered
multicast. This approach is an example of active replication, where every replica
executes the same operations. In the primary/backup paradigm, only one of the
replicas actively executes client requests [14], with the state of the other backup
replicas being updated periodically. This approach is an example of passive repli-
cation. In the object/action paradigm, the system is constructed of passive ob-
jects that export actions, i.e., operations, that modify the state of objects [15].
Applications of this approach to reliable computing are discussed in [16]. In all
these paradigms, abstractions such as atomic multicast and membership are key
components of the supporting infrastructure.

One issue that makes implementing dependability abstractions and services
difficult is that they often incorporate multiple different attributes that charac-
terize the guarantees, or properties, of the abstraction. For example, the atomic
multicast service in [8] has the following attributes:

– Termination: Every message broadcast by a correct sender is delivered to all
correct receivers after some known time interval.

– Atomicity: Every message whose broadcast is initiated by a sender is either
delivered to all correct receivers or to none of them.

– Total order: All messages delivered from all senders are delivered in the same
order at all correct receiving nodes.

Consider a distributed application built on this abstraction. The application
consists of software components, here called nodes, executing on different com-
puters in a distributed system. Let one node transmit a message to the others
using the atomic multicast service. Due to the attributes of the service, a node
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receiving this message has significant information about the distributed state of
the application, even independent of the message contents. For one, because of
atomicity, it knows that all other correct nodes have already received or will re-
ceive the same message. Thus, if this message causes a state change at the node,
it knows that this change will occur at all other nodes as well. Furthermore, be-
cause of termination, it knows that this change will occur within a known time
bound. Finally, if two or more nodes send a multicast at approximately the same
time, these messages will be delivered in the same order on all nodes. Therefore,
the corresponding state changes occur in the same order. Note, however, that all
applications do not require all of the atomic multicast attributes. For example,
for some applications the order of message delivery is not important.

The attributes defined for transactions are another example of abstraction
attributes. A transaction is a collection of operations that is executed as a unit
despite concurrency and potential failures during the execution. Typically, trans-
actions have the following four, so-called ACID, attributes [17]:

– Atomicity: Either the transaction completes or it has no effect, despite fail-
ures of some of the components involved in the transaction.

– Consistency: A transaction takes the database from one consistent state to
another.

– Isolation: The intermediate states of the data manipulated by a transaction
are not visible outside the transaction.

– Durability or Permanence: The effect of a transaction that has completed
will not be undone by failure.

In essence, the ACID attributes guarantee that each transaction is executed
on what appears to be a dedicated system with limited failures, even though in
reality a number of other transactions may be executing concurrently and failures
may occur. While all of the ACID attributes are useful for many applications,
when database systems are used in certain specific application areas such as
CAD, engineering, and artificial intelligence, some of the properties have been
found to be too restrictive [18]. Similarly, subsets of the ACID properties have
been found to be useful for transactions in an operating system context [19].

3 Problems and Limitations

3.1 Abstraction Failures

Abstractions provide a simplified model of an actual entity or service by hid-
ing some details. Abstractions in dependability often hide failures or make the
failures easier to deal with by simplifying the failure semantics. For example,
the abstraction of stable storage ideally hides any hardware and software fail-
ures, while a fail-stop processor ensures that the only possible failure is a crash
that can be reliably detected by other components in the system, the latter be-
ing a simple issue but one proven impossible in true asynchronous distributed
systems [20].
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It is impossible to implement an abstraction such as these that guarantees
the required properties under all conditions. For example, an implementation of
stable storage may use multiple independent disks to store data in a redundant
fashion, but it is always possible that all of them will fail at the same time.
Similarly, the implementation of fail-stop processors and similar abstractions use
multiple physical processors to implement a single virtual processor, and assume
that only a certain fraction of these physical processors can fail simultaneously.
Therefore most, if not all, dependability abstractions are inherently probabilistic.
However, the fact that an abstraction can fail does not need to be a fundamental
problem as long as this possibility is factored into the overall system reliability
requirement. For example, consider some service S that uses abstraction A. Let
the probability of abstraction failure be pf(A) and the probability of S failing
independent from A be pf (S). Now, if the reliability requirement for service
S is less than (1 − pf (A)) ∗ (1 − pf (S)), the system still satisfies its reliability
requirements. The concept of assumption coverage [21] formalizes such reasoning
about overall system dependability.

The failure of a dependability abstraction becomes especially important when
high dependability is needed in applications beyond life-critical systems where
it is economically feasible to build in enough redundancy that such failures are
rare. Nowadays, with increased reliance on computer systems throughout so-
ciety, dependability becomes an important issue even for embedded systems at
homes and offices. In such domains, it is not economically feasible to use massive
redundancy and as a result, the likelihood that the resulting service abstractions
may fail becomes an issue. This implies that the higher-level system must now
be designed to be aware of, and deal with, the possibility of abstraction failure.

Note that abstraction failure is not only relevant for dependability abstrac-
tions, but also for traditional system abstractions such as virtual memory. As
applications grow larger and operate on larger data sets, they can exhaust even
the secondary storage assigned as the backing store for virtual memory. Also,
even if the memory is not exhausted, its response time may become unaccept-
ably slow if a large part of the virtual memory has to be stored on the slower
secondary storage. Indeed, it has been argued that “all non-trivial abstractions,
to some degree, are leaky”, that is, may fail [22].

3.2 Composing Abstractions

Dependable distributed systems are architected using, in essence, a hierarchy
of abstractions, including abstractions provided by the operating system (e.g.,
processes, virtual memory, file system) and abstractions provided by middleware
layers (e.g., remote procedure call, atomic multicast, secure sockets). Therefore,
it is usually necessary to compose abstractions, i.e., to use them in combination
to provide the required application-level functionality. Composition of abstrac-
tions has always been problematic, however. For example, the implementations
of many database systems choose to bypass the file system abstraction provided
by the operating system and directly manage the physical disks instead for per-
formance reasons. In general, the implementation of any abstraction has a per-
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formance penalty since the implementation has to do something to enhance the
underlying system to implement the abstraction’s attributes. This performance
penalty is negligible in many cases, but some abstractions are very expensive
and in some cases, even a small performance penalty may be too much for a
demanding application.

Composing dependability abstractions is an even bigger issue, in part be-
cause the different dependability attributes—reliability, availability, timeliness
(real time), and security—have fundamental conflicts and tradeoffs. For exam-
ple, replicating data and processing for reliability and availability increases the
vulnerability of the system to security attacks, since if even one of the nodes is
compromised, the privacy of the data is lost. Furthermore, the implementation
of reliability and security abstractions often requires extra communication (e.g.,
update backup) and extra processing (e.g., cryptography) that can increase the
response time of the system and reduce its throughput, potentially causing time-
liness requirements to be violated. Reliability techniques based on redundancy
such as re-execution and replication also increase the variance in the system re-
sponse time, which makes it more difficult to achieve the predictability required
by real-time properties.

3.3 Unnecessary Attributes

Different distributed applications have different requirements for the abstractions
they use. For example, consider building a distributed application using atomic
ordered multicast. First, if the order in which the messages can be applied by
the application is commutative—that is, processing messages in any order leads
to the same result—the ordering property is not required. Second, if the applica-
tion has no timeliness requirements, the time bound guarantee is not necessary.
Finally, if the application can tolerate missing a message occasionally—as is of-
ten the case with audio and video—the atomicity and termination properties
are not required either. Similar observations can be made for other abstrac-
tions such as the ACID attributes of the transaction abstraction. Unfortunately,
a given atomic multicast implementation typically provides only a fixed set of
guarantees, which may or may not be appropriate for the application.

One might argue that providing an implementation that satisfies all the pos-
sible attributes would also satisfy all possible applications that require this ab-
straction. However, this approach is not viable for two reasons. The first is the
execution cost associated with each attribute. Implementing an attribute typi-
cally requires some combination of processor time, extra messages, and synchro-
nization time, thereby slowing down the progress of the application. This cost
can be large, even orders of magnitude. As an example, consider a token-based
total-ordered multicast in a distributed system consisting of N computers con-
nected by an Ethernet. Provided that the network is not congested, an unordered
multicast takes O(1) time, whereas an ordered multicast may take up to O(N)
time since the sending site has to wait for the token. As a result, if a distributed
application that does not require ordering has to use this service, its response
time can be severely affected.
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The second reason is the tradeoff between attributes. Sometimes, particularly
in the presence of failures, it may be impossible to guarantee all of an abstrac-
tion’s attributes simultaneously. For example, with transactions operating on
distributed replicated data in a partitioned network, it is impossible to guaran-
tee simultaneously the progress of transactions on all sites and the consistency
of the data. Furthermore, sometimes guaranteeing one property has a negative
impact on another. For example, the implementation of a timeliness property
typically requires anticipating the worst case and therefore, often introduces ex-
tra waiting, affecting properties such as response time. Both of these cases again
illustrate the fundamental difficulties in attempting to enforce all attributes with
a single all-encompassing implementation.

In addition to which attributes are provided by the abstraction implementa-
tion, what level of assurance is provided affects the suitability of an abstraction
implementation for an application. For example, the reliability and availability
of a service can be increased arbitrarily by increasing the level of replication.
However, the higher the degree of replication, the larger the resource cost and
the larger the performance overhead. Similarly, security attributes can often be
made stronger by applying multiple authentication techniques or cryptographic
techniques [23]. For real-time attributes, the level of assurance can be often in-
creased by being more conservative in resource allocation decisions. All of these
improvements of the dependability attribute occur at the cost of more resources
and runtime overhead.

3.4 Mechanisms-Oriented Design

The development of distributed computing, in particular the networking aspects
of distributed computing, has always been focused on protocols rather than the
services or abstractions provided by the protocols. Protocols specify in detail the
messages exchanged by communicating parties, including the types of messages
and the bit-layout of the messages. The purpose of such specification is naturally
to enable independent implementations of the protocol to interoperate. The de-
tails of how the service provided by the protocol is presented to the higher levels
is often irrelevant and left as a local decision. Good examples are the traditional
transport protocols UDP and TCP, as well as the new web services protocols
including HTTP, SOAP, and other XML-based protocols.

While protocol-oriented design is not bad in and of itself, we argue that it
often results in the abstraction provided by the service being ignored. A good case
in point is SOAP (Simple Object Access Protocol), which was initially envisioned
as an RPC-type abstraction for XML-based web service access. However, it was
subsequently decided that SOAP should be a more general messaging service.
The acronym for the protocol was retained, but it no longer stands for “Simple
Object Access Protocol” [24]. However, it can be argued that in practice SOAP
is primarily used as a remote method invocation mechanism for web services
that act as distributed objects [25].

Another area in dependable distributed computing lacking good abstractions
is survivability and intrusion tolerance. While some work in this area has focused
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on providing useful system abstractions such as the Saturne failure and intru-
sion tolerant storage [26], much of it focuses on mechanisms. These include,
for instance, intrusion detection systems and firewalls, which do not provide
explicit system abstractions on which applications or higher-level abstractions
can be built. Moreover, other efforts in survivability are devoted to adopting
fault-tolerance abstractions such as the Byzantine failure model and algorithms
designed for this failure model to survivability. The fundamental problem here is
that intrusions are not the same as failures, in particular, the common assump-
tion of failure independence does not apply to intrusions.

4 Possible Solutions

The issues outlined above are all significant technical challenges and cannot
be solved with a single all-encompassing idea or approach. Here, however, we
give several ideas that we believe have the potential to address some of these
issues and are examples of the type of research we believe is needed in this
area.

4.1 Translucent Abstractions

A translucent abstraction is an abstraction that explicitly exposes useful infor-
mation about the internal operation of the service implementing the abstraction.
An example that illustrates the need for such functionality is when TCP is used
over wireless links. On a wireless network, messages may be lost for a variety of
reasons, including radio interference, message collisions, and congestion. How-
ever, TCP always interprets message loss as congestion and as a result, slows
down message transmission. If the underlying MAC layer provided information
about the reason for the message loss—i.e., was translucent—the TCP layer
could operate more efficiently.

An example of a translucent abstraction related to dependability is an accrual
failure detector [27]. A typical failure detector provides only binary information,
that is, it just gives an indication of whether a node has failed or is operational.
However, in any realistic distributed system, failure detection is unreliable and
failure detectors are bound to give incorrect information at times in the form
of false positives and false negatives.1 To address this issue, an accrual failure
detector does not provide binary information, but rather provides its estimate of
the probability that the node has failed. For instance, at some point in time the
accrual failure detector might report that node X has failed with probability 0.05,
and thus, is operational with probability 0.95. While the abstraction provided by
an accrual failure detector is weaker than that of a perfect failure detector with
binary output, it gives different applications more flexibility in deciding when to
react and how.
1 Note that this problem has lead to a whole research area that characterizes failure

detectors based on the properties required to solve consensus [28].
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4.2 Customizable Abstractions

A customizable abstraction allows the attributes and their levels of assurance to
be customized based on application requirements and on the characteristics of
the underlying execution platform. As such, they make it possible to eliminate
the problems introduced by unnecessary abstraction attributes, and also help
alleviate some of the problems associated with compositionality. A customizable
abstraction can be implemented using a number of approaches. A straightforward
approach is to provide a family of implementations, each of which implements
a different variant of the abstraction. However, implementing these variants can
be very labor intensive if there are large numbers of different possible attribute
combinations.

A configurable service implementation provides a solution to this problem. A
configurable service is one that can be configured to provide different combina-
tions of the service attributes without modifying the service code. A number of
approaches have been proposed for constructing configurable services and pro-
tocols, including approaches based on linear (stack) composition (e.g., System
V Streams [29]), class subtyping (e.g., Arjuna [30]), and protocol-specific back-
planes (e.g., Adaptive [31]). Our own approach, realized in the Cactus system
[32], is a two-level composition model. In this approach, a system is composed of
layers of services (abstractions), where each service is internally constructed of
micro-protocols that interact using a flexible event-driven execution model. This
approach has been used to implement dependable services with customizable se-
curity [23], real-time [33], and reliability attributes [34], as well as combinations
of such attributes [35].

4.3 New Abstractions for Survivability

As indicated above, we believe that survivability is an area that would benefit
from the introduction of abstractions to simplify the construction of more secure
and intrusion-tolerant distributed systems. Constructing systems of this type by
simply combining different techniques such as firewalls, intrusion detection sys-
tems, honeypots, cryptography, and replication such as done currently typically
results in a complex system that is hard to understand and with no guarantees
on the level of survivability.

As an example of such an survivability abstraction, consider an intrusion-
stop process. In a manner analogous to fail-stop processors, such a process is
one that stops executing and issues a notification if it becomes compromised,
e.g., through a buffer-overflow attack. This abstraction could then be used as a
building block for survivable systems similarly to the use of fail-stop processors
for fault-tolerant systems.

An intrusion-stop process can be implemented using system call monitoring,
as described in [36]. This approach is based on, first, using compiler techniques to
analyze an application executable and, second, using binary rewriting to authen-
ticate system calls in the executable by adding a cryptographic MAC (message
authentication code) to each system call that authenticates the system call num-
ber, system call location, and system call arguments, when known. The operating
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system then checks the MAC of each system call at runtime, enabling it to detect
any attempt by a compromised program to deviate from the program’s normal
behavior. Note that this basic technique implements the abstraction subject to
the assumption that a compromised process deviates from the normal system call
behavior. While this technique provides a good starting point for implementing
intrusion-stop processes, further extensions are needed to relax the assumptions
about the possible attack behaviors.

5 Conclusions

Good system abstractions make it easier to architect a dependable distributed
system by providing a logical hierarchy of functionality on which to build applica-
tions or other services. While the importance of such abstractions has long been
known, the focus in dependability research increasingly seems to be on tech-
niques, mechanisms, and protocols rather than on such fundamental concepts
as designing elegant and efficient abstractions. Here, we outlined some issues
that arise with the use of abstractions in dependable computing and proposed a
number of solutions. These include translucent abstractions, which provide con-
trolled visibility into the internal operation of the abstraction’s implementation,
and customizable abstractions, which allow the abstraction’s attributes to be
configured to match the specific requirements of the application and execution
environment. We also argued that survivability is an area that generally lacks
good system abstractions and proposed a new one, intrusion-stop processes.
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